
AUTOSAR Blockset Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

AUTOSAR Blockset Release Notes
© COPYRIGHT 2019–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2023a

AUTOSAR Software Component Modeling . 1-2

AUTOSAR Classic Platform Release 21-11 . 1-2
Basic Software (BSW) blocks support all AUTOSAR schema versions 1-2
Single Point Interpolation Block . 1-2
Support for reusable functions in multi-instance AUTOSAR export-function

models . 1-2
Import of InitValue specified by Provide port supported for AUTOSAR

parameters . 1-2
Find all elements of a category in AUTOSAR mapping 1-3
Support for specifying version of AUTOSAR platform type name 1-3
Support for uint32 data type for enumerations . 1-4

AUTOSAR Adaptive Software Component Modeling 1-5

AUTOSAR Adaptive Platform Release 21-11 . 1-5
Support for External Mode . 1-5

AUTOSAR Architecture Modeling . 1-6

Support for Adaptive AUTOSAR software architecture modeling 1-6
Specifying Classic or Adaptive Platform for architecture models 1-6
Manage multiple interface dictionaries in Interface Editor 1-6
Support for Simulink.NumericType in interface dictionary 1-7
Interface Editor support for custom architectures by using Native platform-

independent setting . 1-7
Option to generate single ARXML file when exporting architecture models

. 1-7
Support for exporting unlinked components in an AUTOSAR architecture

model . 1-7
Create AUTOSAR architecture model from existing System Composer

component . 1-8
Create lifeline as component or composition in sequence diagram for

architecture models . 1-8

R2022b

AUTOSAR Software Component Modeling . 2-2

AUTOSAR Classic Platform Release 20-11 . 2-2
Initial values for NVRAM service component blocks 2-2

iii

Contents

Import for Basic Software blocks . 2-2
Implementation data types reference AUTOSAR implementation platform

types . 2-3
LONG-NAME configuration for calibration and measurement elements . . . 2-3
Fix-Axis Lookup Tables ARXML Support . 2-4
RecordValueSpecification ARXML Support for Lookup Table Constants . . . 2-4
Calibration File Customization . 2-4
Simulink.ValueType object to store design attributes with data types 2-4
Internal data packaging support for multi-instance AUTOSAR models 2-4
End-to-End Transformer protection for sender and receiver ports 2-5
Change the parameter value of AUTOSAR elements at precompile or

postbuild using variant parameters . 2-5

AUTOSAR Adaptive Software Component Modeling 2-6

AUTOSAR Adaptive Platform Release 20-11 . 2-6
Modeling and code generation for ara::com::method asynchronous call

behaviors . 2-6
Enhanced model function scheduling with multithreading for Adaptive

AUTOSAR example main . 2-6
Top-down namespace support of user-defined data types for ARXML-

imported Adaptive AUTOSAR models . 2-7

AUTOSAR Architecture Modeling . 2-8

New interface dictionary to support data type and interface management
for architecture model components and compositions 2-8

Graphical editor for interactive interface dictionary workflows 2-9
Programmatic API for interface dictionary . 2-11
Interface dictionary migrator . 2-11
Profiles and stereotypes for AUTOSAR architecture models 2-11
Enable function authoring in AUTOSAR Blockset architectures 2-11

Functionality being removed or changed . 2-12

AUTOSAR Adaptive Linux Executable Toolchain 2-12

R2022a

AUTOSAR software component modeling . 3-2
AUTOSAR Classic Platform Release 19-11 . 3-2
Postbuild Conditions for Startup Variants . 3-2
Basic Software component event failure testing and simulation with Dem

Status Override and Dem Status Inject blocks . 3-2
Configure NvBlockNeeds parameters StoreAtShutdown and RestoreAtStart

. 3-3
Export ARXML without unused data types and related elements 3-3
Improved breakpoint ARXML and mapping support for model hierarchies

. 3-3
Code replacement enhancements for blocks that do not overflow 3-3
Generate Calibration Files tool for Classic AUTOSAR 3-3

iv Contents

AUTOSAR adaptive software component modeling 3-4
ara::com::method support . 3-4
Event-based execution modeling and code generation for ara::com events

. 3-4
Scoped enum classes for C++11 code generation 3-4
Nested namespace customization for C++ code generation 3-4
Enable ara::com DDS binding for Adaptive AUTOSAR applications 3-4

R2021b

AUTOSAR software component modeling . 4-2
AUTOSAR IFX, IFL, MFX, and MFL library implementations for host code
verification . 4-2

Improved lookup table ARXML support for model hierarchies 4-2
Lookup table ARXML support for AdminData record layout annotations . . 4-2
Improved performance for imported compositions by sharing AUTOSAR

dictionary . 4-2

AUTOSAR adaptive software component modeling 4-3
Persistent memory for adaptive applications . 4-3
C++ reference types in the generated code . 4-3
Name and namespace customization for C++ model classes 4-3

Export software component mapping for AUTOSAR ECU 4-3

AUTOSAR mapping workflow enhancements . 4-4

Specify message queue properties on AUTOSAR component-level bus
element ports . 4-4

Functionality being removed or changed . 4-4
AUTOSAR adaptive default name for a model class is the model name . . . 4-4

R2021a

AUTOSAR software component modeling . 5-2
Simulink messaging over bus ports for queued S-R communication 5-2
Components with export-function runnables support Simulink bus ports

. 5-2
Components with Simulink bus ports support variant conditions and

nonvirtual buses . 5-3
Default data packaging for AUTOSAR internal variables 5-3
Lookup table ARXML support for row-major layout and improved tool

interoperability . 5-3

AUTOSAR adaptive software component modeling 5-4
AUTOSAR Adaptive Platform Release 19-11 . 5-4

v

Simulink messaging over bus ports for event-based communication 5-4
Enhanced CMake tooling for adaptive models . 5-5
Run-time logging (ara::log) for adaptive executables 5-5

AUTOSAR architecture modeling . 5-5
ARXML support for execution order constraints at architecture (VFB) level

. 5-5
Model Linker app for meeting component model linking requirements . . . 5-5

R2020b

AUTOSAR software component modeling . 6-2
Support for AUTOSAR Classic Platform Release 4.4 6-2
Port parameter modeling enhancements . 6-2
Import and export AUTOSAR IncludedDataTypeSets 6-2
ARXML support for execution order constraints . 6-3
Signal data mapping enhancements . 6-3

AUTOSAR adaptive software component modeling 6-3
Linux executables for adaptive models . 6-4
ASAP2 file generation enhancements . 6-4

Import AUTOSAR software composition into architecture model 6-4

Functionality being removed or changed . 6-4
Support for AUTOSAR Classic Platform schema versions 3.x and 2.1 has

been removed . 6-4

R2020a

AUTOSAR software component modeling . 7-2
Model function inhibition by using Basic Software blocks 7-2
Export multidimensional matrices for AUTOSAR variables 7-2

AUTOSAR adaptive software component modeling 7-3
Support for AUTOSAR Adaptive Platform Release 19-03 7-3
Calibrate data for adaptive applications by using XCP and ASAP2 7-3
Find adaptive services by using dynamic discovery 7-3

AUTOSAR software architecture modeling . 7-4
Use spotlight view to analyze component or composition dependencies . . 7-4
Programmatically create and configure architecture models 7-4

Functionality being removed or changed . 7-5
Support for AUTOSAR Classic Platform schemas 3.x and 2.1 will be

removed . 7-5

vi Contents

R2019b

AUTOSAR Component Designer app and AUTOSAR tab 8-2

AUTOSAR software component modeling . 8-3
Map calibration data for submodels referenced from component models

. 8-3
Export variation points for calibration data . 8-3
Model AUTOSAR ports by using Simulink bus ports 8-3
Configure runnable execution order by using Schedule Editor 8-4
Code Mappings editor changes . 8-4

AUTOSAR adaptive software component modeling 8-4
Import ARXML software descriptions . 8-4
Configure service instance identification for ARXML manifest and generated

code . 8-5
Configure event sends with memory allocation . 8-5

AUTOSAR software architecture modeling . 8-5
Create architecture models . 8-5
Add and connect compositions and components . 8-6
Define component behavior by creating or linking models 8-6
Configure scheduling and simulation . 8-6
Generate and package composition ARXML descriptions and component

code . 8-6

R2019a

Introducing AUTOSAR Blockset . 9-2

Product restructuring overview . 9-2

Resources for upgrading from AUTOSAR Standard support package . . . 9-3

AUTOSAR Classic Platform support extended to Release 4.3.1 9-3

Support for AUTOSAR Adaptive Platform Release 18.10 9-4

Generate AUTOSAR IFL and IFX library routines for interpolation using
AUTOSAR lookup table blocks . 9-4

Enhanced AUTOSAR model creation in Simulink using Component Quick
Start or Simulink Start Page . 9-4

Reuse existing AUTOSAR elements for software components created in
Simulink . 9-5

Incrementally auto-configure and map new Simulink elements in
AUTOSAR model . 9-5

vii

Code Perspective enhancements for mapping data stores, model
workspace parameters, and internal signals and states 9-6

Map data stores to AUTOSAR component per-instance and static memory
for calibration . 9-6

Map model workspace parameters to AUTOSAR component instance-
specific parameters for calibration . 9-6

Signals and States tabs combined . 9-6
Lookup Tables tab removed . 9-6
Model data grouped in categories for easy reference 9-7

Parameter and signal calibration attributes removed from AUTOSAR data
objects . 9-8

Change to AUTOSAR XML import behavior for
ArTypedPerInstanceMemory element with Service Dependency 9-8

Model Advisor checks for AUTOSAR Blockset configuration and lookup
table block code replacements . 9-9

AUTOSAR contextual tab in the Simulink Toolstrip Tech Preview 9-9

viii Contents

R2023a

Version: 3.1

New Features

Bug Fixes

Compatibility Considerations

1

AUTOSAR Software Component Modeling

AUTOSAR Classic Platform Release 21-11
R2023a extends support of the AUTOSAR Classic Platform to include Release R21-11. AUTOSAR
Blockset supports schema version R21-11 for import and export of ARXML files and generation of
AUTOSAR-compliant C code.

If you import schema R21-11 ARXML files into Simulink®, the ARXML importer detects and uses the
schema version and sets the schema version parameter in the model.

If you create an AUTOSAR classic model in Simulink the initial default schema is R21-11. To change
the schema version, use the model configuration parameter Generate XML file for schema version
or an equivalent function call. For more information, see “Select AUTOSAR Classic Schema”.

Basic Software (BSW) blocks support all AUTOSAR schema versions
Basic Software (BSW) blocks now support all AUTOSAR schema versions supported by AUTOSAR
Blockset. The BSW blocks inherit the schema version specified by the model. Code and ARXML
generated from the component reflect the schema version specified on the model. When you change
the schema version specified by the model, the software automatically replaces software calls to the
correct operation. In some cases, the software may prompt you to confirm a change when moving
between schema versions.

Single Point Interpolation Block
For the AUTOSAR classic platform, AUTOSAR Blockset provides Single Point Interpolation block
which allows you to perform liner interpolation similar to the AUTOSAR Ifl_Interpolate_f32
routine. The block generates a call to the Ifl_Interpolate_f32 routine in the generated code
when the CodeReplacementLibrary parameter is set to AUTOSAR 4.0.

For more information, see Single Point Interpolation.

Support for reusable functions in multi-instance AUTOSAR export-
function models
R2023a adds support for reusable functions in AUTOSAR models that contain multiple instances of a
software component and use the export-function modeling style. Previously, only rate-based models
supported reusable functions for multiple instances of an AUTOSAR component.

For more information about multi-instance support, see “Model AUTOSAR Software Components”.

Import of InitValue specified by Provide port supported for AUTOSAR
parameters
Starting in R2023a, InitValue for parameters, including lookup tables, specified by a Provide port
of a parameter software component can be imported from ARXML.

In previous releases, only the InitValue specified by a Require port was supported when
importing ARXML.

R2023a

1-2

Find all elements of a category in AUTOSAR mapping
Starting in R2023a, to return all elements of a specified category you can now use the find function.
For example, to find all states in an AUTOSAR model enter the following:

openExample('autosar_swc');
mapObj = autosar.api.getSimulinkMapping('autosar_swc');
states = find(mapObj,'States');

states =

 1×1 cell array

 {'autosar_swc/Integrator'}

The output contains an array of handles, paths or names of the states present in the specified model.

Support for specifying version of AUTOSAR platform type name
You can specify the version for AUTOSAR platform type names in AUTOSAR-compliant C code that
you generate for an AUTOSAR component model.

To set the version interactively, use the AUTOSAR Dictionary XML Options tab and set the Platform
Type Names option.

To set the version programmatically, use the set function to change the PlatformTypeNames
property.

>> arProps = autosar.api.getAUTOSARProperties('myModel');
>> set(arProps,'XmlOptions','PlatformTypeNames','AUTOSAR4.x');
>> get(arProps,'XmlOptions','PlatformTypeNames')

ans =

 'AUTOSAR4.x'

 AUTOSAR Software Component Modeling

1-3

Currently the default Platform Type Names is AUTOSAR3.x.

For more information, see Configure AUTOSAR XML Options.

Compatibility Considerations
Support for AUTOSAR 3.x platform type names will be removed in a future release. Using AUTOSAR
4.x platform types is recommended.

Support for uint32 data type for enumerations
In R2023a, Simulink supports simulation and code generation for models that use enumerations with
a uint32 data type, which includes support for AUTOSAR models. See “Support for uint32 data type
for enumerations” for more information.

R2023a

1-4

https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-autosar-component-using-autosar-properties-explorer.html#mw_90097dad-13a1-40a7-a67b-b6f8b917cb19

AUTOSAR Adaptive Software Component Modeling

AUTOSAR Adaptive Platform Release 21-11
R2023a extends support of the AUTOSAR Adaptive Platform to include Release 21-11. AUTOSAR
Blockset supports schema version R21-11 for import and export of ARXML files and generation of
AUTOSAR-compliant C++ code.

If you import schema R21-11 ARXML files into Simulink, the ARXML importer detects and uses the
schema version and sets the schema version parameter in the model.

If you create an AUTOSAR adaptive model in Simulink, the initial default schema version is R21-11.
To change the schema version, use the model configuration parameter Generate XML file for
schema version or an equivalent function call. For more information, see “Select AUTOSAR
Adaptive Schema”.

Support for External Mode
Starting from R2023a, AUTOSAR Blockset allows you to configure an AUTOSAR adaptive model for
external mode simulation.

For more information, see “Configure AUTOSAR Adaptive Model for External Mode Simulation”.

 AUTOSAR Adaptive Software Component Modeling

1-5

AUTOSAR Architecture Modeling
Support for Adaptive AUTOSAR software architecture modeling
R2023a extends AUTOSAR software architecture support to include modeling for the Adaptive
Platform (requires System Composer™).

You can use a Simulink Start Page template to create an architecture model and then, from the
architecture model, specify the platform kind as Adaptive. This workflow provides resources and a
canvas for developing AUTOSAR composition and component models for the Adaptive Platform. See
“Create AUTOSAR Architecture Models” for more information.

Alternatively, you can import adaptive AUTOSAR XML (ARXML) software component descriptions to
create adaptive models.

From the adaptive architecture model, you can:

• Add AUTOSAR Composition block and the new Adaptive Component block from the palette or
toolstrip.

• Create Input, Output, Server, and Client block ports by clicking the block edges of an adaptive
component or composition and root ports by clicking the containing model boundary.

• Connect Adaptive Component and Composition blocks by dragging signal lines.
• Define component behavior by creating or linking adaptive models or by importing ARXML

component descriptions.
• Link components to requirements (requires Simulink Requirements™).
• Simulate the behavior of the aggregated adaptive components.
• Generate and package composition ARXML descriptions and component code (requires Embedded

Coder®)

To learn more, see “Software Architecture Modeling”.

Specifying Classic or Adaptive Platform for architecture models
In R2023a, you can configure an AUTOSAR architecture model for AUTOSAR Classic or Adaptive
software development. Once the platform kind is set, you can add platform-specific compositions and
components to the model. The default platform is Classic. Mixing classic and adaptive components in
the same architecture model is not supported.

For more information, see “Create AUTOSAR Architecture Models”, “Add and Connect AUTOSAR
Classic Components and Compositions”, and “Add and Connect AUTOSAR Adaptive Components and
Compositions”.

Manage multiple interface dictionaries in Interface Editor
In R2023a, the Interface Editor allows you to manage multiple interface dictionaries in a single editor
window. The Interface Editor displays open interface dictionaries in the Sources pane. Under the
Interfaces and Data Types tabs, the Interface Editor provides a DataSource column indicating the
source dictionary for each interface or data type.

For more information about the Interface Editor, see Interface Editor.

R2023a

1-6

Support for Simulink.NumericType in interface dictionary
Beginning in R2023a, AUTOSAR Blockset adds interface dictionary support for the
Simulink.NumericType data class. Once you create an interface dictionary, you can add
NumericType objects interactively by using the standalone Interface Editor or programmatically by
using addNumericType.

Additionally, the interface dictionary Migrator wizard now preserves Simulink.NumericType data
types in the migration from data dictionaries to an interface dictionary. Previously the Migrator
translated a Simulink.NumericType to a Simulink.AliasType.

For more information, see Simulink.NumericType and “Manage Shared Interfaces and Data Types
for AUTOSAR Architecture Models”.

Interface Editor support for custom architectures by using Native
platform-independent setting
R2023a extends Interface Editor support for custom architectures by adding the Native platform
setting. In previous releases, interface dictionaries were mapped to the AUTOSAR Classic Platform
and used specifically with classic architecture models.

The Native setting is for open architectures in support of custom, platform-independent system
design. Native interface dictionaries can also be linked to and used with AUTOSAR Adaptive
architecture models.

When enabling custom (unmapped) interface dictionaries, you can author, manage, and share data
type definitions and data interfaces among your custom architecture models, then apply them to the
components and compositions modeled in Simulink. This workflow is similar to the one you use with a
classic architecture model and interface dictionary mapped to the AUTOSAR Classic Platform.
Additionally, with custom interface dictionaries you can view service interfaces, create hierarchical
interfaces, and add references to other interface dictionaries.

For more information, see Interface Editor.

Option to generate single ARXML file when exporting architecture
models
Starting in R2023a, you can specify the granularity of XML file packaging for elements in AUTOSAR
architecture models. You can specify AUTOSAR XML (ARXML) to be packaged in a single file or
packaged in multiple files (modular packaging). Previously, only modular packaging was supported.

To specify XML options, click Export > Configure XML Option on the toolstrip of your AUTOSAR
architecture model. In the XML Options dialog box that opens, you can set the Export XML File
Packaging option to export to a single file or to multiple files. For more information about exporting
AUTOSAR composition descriptions, see “Generate and Package AUTOSAR Composition XML
Descriptions and Component Code”.

Support for exporting unlinked components in an AUTOSAR
architecture model
Before R2023a, AUTOSAR software component blocks in an architecture model were required to
have defined Simulink behavior before you could export the model. Starting in R2023a, you can

 AUTOSAR Architecture Modeling

1-7

export component ports and interfaces to AUTOSAR XML even when the component is not linked to a
Simulink implementation model. This allows incremental workflows where internal behavior can be
specified later. For more information about defining component behavior, see “Define AUTOSAR
Component Behavior by Creating or Linking Models”.

Create AUTOSAR architecture model from existing System Composer
component
You can convert a System Composer component to an AUTOSAR architecture model. During
conversion, you can select Classic or Adaptive Platform. For classic architecture modeling, data
interfaces are supported. For adaptive modeling, data interfaces and service interfaces are
supported.

For more information, see “Create AUTOSAR Architecture from a Component in System Composer
Model”.

Create lifeline as component or composition in sequence diagram for
architecture models
In R2023a, you can create a lifeline as a component or composition in sequence diagrams. Select
Component > Add Lifeline from the menu and select type of lifeline to be created, Component or
Composition. You can add a child lifeline to an existing AUTOSAR composition lifeline.

R2023a

1-8

R2022b

Version: 3.0

New Features

Compatibility Considerations

2

AUTOSAR Software Component Modeling

AUTOSAR Classic Platform Release 20-11
R2022b extends support of the AUTOSAR Classic Platform to include Release 20-11. AUTOSAR
Blockset supports schema version R20-11 for import and export of ARXML files and generation of
AUTOSAR-compliant C code.

If you import schema R20-11 ARXML files into Simulink, the ARXML importer detects and uses the
schema version and sets the schema version parameter in the model.

If you create an AUTOSAR classic model in Simulink, the initial default schema version is R20-11. To
change the schema version, use the model configuration parameter Generate XML file for schema
version or an equivalent function call. For more information, see Select AUTOSAR Classic Schema.

Initial values for NVRAM service component blocks
R2022b enables you to define initial values for NVRAM services that are accessed during simulation
by basic software. To configure the initial values, you can open the NVRAM service component block
parameters, click the Initial Values tab, and set an initial value for each NVRAM block.

You can specify initial values with parameter objects to support common test workflows. Initial values
can be specifiable for all Simulink data types, including standard types, fixed point, arrays, structured
types, and enumerations. For more information, see NVRAM Service Component. For an example of
how to use NVRAM service component to simulate ECU for basic software, see Simulate AUTOSAR
Basic Software Services and Run-Time Environment.

Import for Basic Software blocks
Starting in R2022b, when importing a component with accesses to client ports for Basic Software
operations, a basic software caller block is created. This creation of basic software blocks during
ARXML import supports createComponentAsModel, updateModel, and composition import

R2022b

2-2

https://www.mathworks.com/help/releases/R2022b/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2022b/autosar/ref/nvramservicecomponent.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/example-simulate-autosar-basic-software-services.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/example-simulate-autosar-basic-software-services.html

workflows to support Dem, NvM and FiM function calls. You should now be able to see AUTOSAR
Blockset caller blocks from the shipping libraries created in models. For more information, see
Component Creation.

Implementation data types reference AUTOSAR implementation
platform types
R2022b allows you to satisfy AUTOSAR data type specification requirements related to AUTOSAR
platform types. To specify AUTOSAR platform types, you can use the AUTOSAR Dictionary XML
Options tab to configure the new AUTOSAR platform type parameters:

• Implementation Platform Types Package – Specify the top-level package name for AUTOSAR
platform types and base types. AUTOSAR implementation platform types are grouped in the
ImplementationDataTypes subpackage, while the base types are grouped in the BaseTypes
subpackage. For Modular ARXML export, the top-level package and its content is now exported in
the stub/XXXXX_platformtypes.arxml file.

• User-defined Implementation Types References – Specify the implementation data type
references behavior. If you select PlatformTypeReference your user-defined implementation
data types reference an AUTOSAR implementation data type (CATEGORY is set to
Type_Reference in the ARXML). If you select BaseTypeReference your user-defined data type
references a SWBaseType (CATEGORY is set toValue in the ARXML).

• Native Declaration – Specify the native declaration. If you select PlatformTypeName, the
native declaration inherits the Platform Type name. If you select CIntegralTypeName, the native
declaration uses a C integral type name according to the hardware configuration specified in the
model settings.

For more information, see Configure AUTOSAR XML Options.

LONG-NAME configuration for calibration and measurement elements
Configuration of the LONG-NAME for data elements is often required in calibration workflows to
generate correct ASAP2 files. R2022b introduces the ability to directly configure the LONG-NAME for
the following measurement and calibration data:

• Parameters
• Datastores
• Signals & States
• Sender-Receiver Data Elements

To configure the LONG-NAME of parameters, datastores, signals, or states, you can use the Property or
Mapping Inspectors. To programmatically configure the LONG-NAME, you can use the mapping API
functions mapParameter, mapDataStore, mapSignal, and mapState.

For sender-receiver data elements, you can configure the LONG-NAME by using the Property and
Mapping Inspectors or the AUTOSAR Dictionary. To configure programmatically, you can use the
getAUTOSARProperties API functions.

For more information, see AUTOSAR Calibration and Measurement Data.

 AUTOSAR Software Component Modeling

2-3

https://www.mathworks.com/help/releases/R2022b/autosar/autosar-component-creation.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-autosar-component-using-autosar-properties-explorer.html#mw_90097dad-13a1-40a7-a67b-b6f8b917cb19
https://www.mathworks.com/help/releases/R2022b/autosar/autosar-calibration-parameters-and-lookup-tables.html

Fix-Axis Lookup Tables ARXML Support
Starting in R2022b, AUTOSAR Blockset supports importing and exporting of ARXML description of Fix
Axis Lookup table application data types. The SwRecordLayout that specifies how to serialize data
in the memory of an AUTOSAR ECU can be exported.

For more information, see Configure FIX_AXIS Lookup Tables by Using Simulink Parameter Objects.

RecordValueSpecification ARXML Support for Lookup Table Constants
Starting in R2022b, the AUTOSAR Blockset supports RecordValueSpecification (RVS) for
specifying lookup table constants along with ApplicationValueSpecification. With this
support, you can export or import the Lookup table constants as RVS.

For more information, see Exporting Lookup Table Constants as Record Value Specification.

Calibration File Customization
R2022b enhances Generate Calibration Files tool to include or exclude the AUTOSAR
elements in the ASAP2 file for an AUTOSAR classic model.

For more information, see Generate ASAP2 and CDF Calibration Files (Simulink Coder).

Simulink.ValueType object to store design attributes with data types
AUTOSAR Blockset extends support for the Simulink Simulink.ValueType object that allows you to
store design attributes such as minimum units, maximum units, and dimensions within a Simulink
data type in a workspace object. AUTOSAR Blockset supports the use of ValueType objects for both
import and export workflows.

On import, AUTOSAR blocks can read application data types and their corresponding implementation
data types from ARXML and model application data types as ValueType objects. You can also use the
createComponentAsModel functionality with models that use the ValueType objects. On export,
ARXML files are generated to contain application data types and implementation data types to
represent ValueType in the exported ARXML.

For more information, see Simulink.ValueType and Component Creation.

Internal data packaging support for multi-instance AUTOSAR models
R2022b supports configuring the default data packaging used for internal data stores, signals, and
states associated with each instance of an AUTOSAR model to use C-typed per instance memory in
the generated code.

You can configure C-typed per instance memory as the default data packaging when:

• The model is rate-based.
• The model is configured for multi-instance code generation; that is, the Configuration Parameter

Code interface packaging is set to Reusable function.

For more information, see Specify Default Data Packaging for AUTOSAR Internal Variables.

R2022b

2-4

https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html#mw_b8266b19-8d6c-4f03-8b2e-57fb8c6fb516
https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html#mw_3283d8d7-6702-4c0c-a626-a0a137de952a
https://www.mathworks.com/help/releases/R2022b/rtw/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2022b/simulink/slref/simulink.valuetype.html
https://www.mathworks.com/help/releases/R2022b/autosar/autosar-component-creation.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_d2e293e9-5017-4069-9d1f-b31aa767b4f1

End-to-End Transformer protection for sender and receiver ports
Starting in R2022b, Simulink supports AUTOSAR read and write calls that include a Transformer
error argument in the generated code to enable end-to-end (E2E) data consistency checks.

You can configure RTE calls to use the optional E2E Transformer argument as the E2E protection
method when using AUTOSAR schema version 4.2 or later. For earlier versions of AUTOSAR schema,
you can configure the E2E protection method to be E2E protection wrapper, which is the Simulink
default setting.

For more information, see Configure AUTOSAR S-R Interface Port for End-To-End Protection.

Change the parameter value of AUTOSAR elements at precompile or
postbuild using variant parameters
R2022b enables you to generate AUTOSAR code for variant parameters in precompile and postbuild
binding times. You can model precompile binding times for AUTOSAR elements by configuring variant
parameters with a code compile activation time, a MATLAB® variable condition, and variant logic
defined by expressions. Precompile variant points are resolved with a call to the runtime environment
(RTE) prior to the code compile. Similarly, you can model postbuild binding times for AUTOSAR
elements by configuring variant parameters with a startup activation time, a MATLAB variable
condition, and variant logic defined by expressions. Postbuild variant points are resolved with a call to
the RTE after the code is compiled and deployed on an electronic control unit (ECU). For more
information, see Configure Variant Parameter Values for AUTOSAR Elements.

 AUTOSAR Software Component Modeling

2-5

https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-autosar-sender-receiver-communication.html#buzqk6v-1
https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-variant-parameter-values-for-autosar-elements.html

AUTOSAR Adaptive Software Component Modeling

AUTOSAR Adaptive Platform Release 20-11
R2022b extends support of the AUTOSAR Adaptive Platform to include Release 20-11. AUTOSAR
Blockset supports schema version R20-11 for import and export of ARXML files and generation of
AUTOSAR-compliant C++ code.

If you import schema R20-11 ARXML files into Simulink, the ARXML importer detects and uses the
schema version and sets the schema version parameter in the model.

If you create an AUTOSAR adaptive model in Simulink, the initial default schema version is R20-11.
To change the schema version, use the model configuration parameter Generate XML file for
schema version or an equivalent function call. For more information, see Select AUTOSAR Adaptive
Schema.

Modeling and code generation for ara::com::method asynchronous
call behaviors
R2022b extends support of Adaptive AUTOSAR modeling and code generation of client-server
communication by supporting asynchronous, non-blocking call behaviors.

In R2022a, AUTOSAR Blockset introduced support for Adaptive AUTOSAR modeling and code
generation of client-server communication with synchronous call behaviors, which produce blocked
client execution, where clients send requests to a server and wait for the response. In R2022b,
AUTOSAR Blockset extends that support to asynchronous call behaviors, where clients send requests,
continue execution after the request is sent, and process the response upon method completion.

For more information, see Model Client-Server Communication.

Enhanced model function scheduling with multithreading for Adaptive
AUTOSAR example main
Starting in R2022b, code generation for Adaptive AUTOSAR models introduces an Executor class to
enable easier management for scheduling and execution of model tasks.

The new scheduling and execution interface is enabled for models that use the following
Configuration Parameter settings:

• Code Generation > System target file set to autosar_adaptive.tlc
• Code Generation > Language standard set to C++11 (ISO)
• Code Generation > AUTOSAR Code Generation Options > XCP Configuration Transport

layer set to None

For more information about Adaptive AUTOSAR configuration, see Configure AUTOSAR Adaptive
Software Components.

R2022b

2-6

https://www.mathworks.com/help/releases/R2022b/autosar/ug/generating-autosar-code-and-description-files-adaptive.html#mw_867039a4-d1c4-44c4-a4c9-cf3227008028
https://www.mathworks.com/help/releases/R2022b/autosar/ug/generating-autosar-code-and-description-files-adaptive.html#mw_867039a4-d1c4-44c4-a4c9-cf3227008028
https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-autosar-adaptive-service-comunication.html#mw_3bc58ec3-8c8b-416b-8a27-eebe3bca8a8a
https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-autosar-adaptive-software-components.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/configure-autosar-adaptive-software-components.html

Top-down namespace support of user-defined data types for ARXML-
imported Adaptive AUTOSAR models
Starting in R2022b, Simulink preserves namespaces for user-defined data types that are described in
the imported AUTOSAR XML (ARXML) and provides round trip support for ARXML export and code
generation.

After ARXML import and algorithm development, you can generate AUTOSAR-compliant C++ code
from the updated model, which produces namespaces for the data types that are preserved in the
model.cpp and model.h generated files. Exporting ARXML from the updated model preserves the
<NAMESPACES> tagging for the scoped data types.

For more information about importing ARXML files, see Import AUTOSAR XML Descriptions Into
Simulink.

 AUTOSAR Adaptive Software Component Modeling

2-7

https://www.mathworks.com/help/releases/R2022b/autosar/ug/importing-an-autosar-software-component.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/importing-an-autosar-software-component.html

AUTOSAR Architecture Modeling

New interface dictionary to support data type and interface
management for architecture model components and compositions
R2022b introduces a new dictionary, the interface dictionary, that is dedicated to managing the
shared interfaces and data types across AUTOSAR components and compositions modeled in
Simulink. The interface dictionary enables better data ownership and encapsulation within a
component while still enabling sharing data types and interfaces across components. The interface
dictionary can formally manage shared element definitions like interfaces and data types across
components and compositions so that modeled design data and AUTOSAR properties are easier to
scale in Simulink.

In R2022b, a top-down workflow is supported where you can create and link an interface dictionary
to an AUTOSAR architecture model. Component models created from the AUTOSAR architecture
models automatically have the interface dictionary linked to them. This design also allows regular
data dictionaries to co-exist with interface dictionaries.

An interface dictionary can be linked directly to a model hierarchy or it can be indirectly referenced
from a data dictionary:

You can graphically or programmatically configure the attributes of an interface dictionary and apply
them to an architecture model using this basic workflow:

1 Create an interface dictionary.
2 Design data types and interfaces by using the interface dictionary.
3 Apply the interfaces to the architecture model in the Simulink environment.
4 Deploy the interface dictionary shared interface and data type content in the final application.

Additionally, ARXML export is supported for architecture models with interface dictionaries by
exporting the dictionary ARXML into a folder with the interface dictionary name and adding the
dictionary ARXML files to the created ZIP file for the application.

R2022b

2-8

For more information, see Manage Shared Interfaces and Data Types for AUTOSAR Architecture
Models.

Graphical editor for interactive interface dictionary workflows
In 2022b, you can interactively configure shared interfaces, data types, and platform-specific
attributes in an interface dictionary that you can then associate with an AUTOSAR model. You can
graphically configure these attributes in the interface dictionary and then apply them to an
architecture model using this basic workflow:

1 Create an interface dictionary. In an AUTOSAR architecture model, on the Modeling tab, open
the Design menu and use the Interfaces and Types section to create or link to an existing
interface dictionary to the model.

2 Design data types and interfaces by using the interface dictionary. In the dictionary, you can
create and configure data types and interfaces.

 AUTOSAR Architecture Modeling

2-9

https://www.mathworks.com/help/releases/R2022b/autosar/ug/manage-shared-interfaces-and-data-types-for-autosar-architecture-models.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/manage-shared-interfaces-and-data-types-for-autosar-architecture-models.html

In the Property Inspector pane, you can additionally view and configure the AUTOSAR interface
properties InterfaceKind, IsService, and Package. Setting these properties in the Property
Inspector will set them in the generated interface dictionary .sldd file.

3 Apply the interfaces to the architecture model. You can save the linked interface dictionary and
use the Interface Editor to apply these properties to your modeled AUTOSAR application.

4 Deploy the interface dictionary content in the final application by building the model.

For more information, see Manage Shared Interfaces and Data Types for AUTOSAR Architecture
Models.

R2022b

2-10

https://www.mathworks.com/help/releases/R2022b/autosar/ug/manage-shared-interfaces-and-data-types-for-autosar-architecture-models.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/manage-shared-interfaces-and-data-types-for-autosar-architecture-models.html

Programmatic API for interface dictionary
R2022b introduces an API to support programmatic access to the interface dictionary. You can
programmatically author, configure, and manage interfaces and data types in an interface dictionary
by using the functions for the Simulink.interface.Dictionary object.

For more information, see Manage Shared Interfaces and Data Types for AUTOSAR Architecture
Models.

Interface dictionary migrator
R2022b also introduces an interface dictionary migrator object that allows you to migrate data types
and interfaces stored in the base workspace or in a data dictionary hierarchy to the interface
dictionary associated with an architecture model. For more information, see Migrator.

Profiles and stereotypes for AUTOSAR architecture models
In R2022b, AUTOSAR expands on the current System Composer support of stereotypes and profiles
to capture non-functional properties on architecture modeling elements. You can achieve this by
creating a profile containing stereotype definitions and applying these stereotypes on the modeling
elements. Stereotypes and profiles enable you to:

• Create custom views that focus on certain aspects of the architecture.
• Run analysis models by quantitatively evaluating the architecture for certain characteristics.

This custom meta-data is added on top of AUTOSAR elements and will not be imported or exported to
ARXML but can be used in conjunction with System Composer for custom views and analysis. For
more information, see Create Profiles Stereotypes and Views for AUTOSAR Architecture Analysis and
Use Stereotypes and Profiles (System Composer).

Enable function authoring in AUTOSAR Blockset architectures
In R2022b, functions authoring is enabled in AUTOSAR Blockset software architectures. The System
Composer Functions Editor (System Composer) is now available from the toolstrip in the Modeling
menu. The Functions Editor (System Composer) updates the diagram and populates it with the
functions or runnables from the behavior components of the architecture model.

 AUTOSAR Architecture Modeling

2-11

https://www.mathworks.com/help/releases/R2022b/autosar/ref/simulink.interface.dictionary.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/manage-shared-interfaces-and-data-types-for-autosar-architecture-models.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/manage-shared-interfaces-and-data-types-for-autosar-architecture-models.html
https://www.mathworks.com/help/releases/R2022b/autosar/ref/simulink.interface.dictionary.migrator.html
https://www.mathworks.com/help/releases/R2022b/autosar/ug/view-autosar-component-or-composition-dependencies.html
https://www.mathworks.com/help/releases/R2022b/systemcomposer/ug/manage-stereotypes-and-profiles.html
https://www.mathworks.com/help/releases/R2022b/systemcomposer/ref/functionseditor.html
https://www.mathworks.com/help/releases/R2022b/systemcomposer/ref/functionseditor.html

Functionality being removed or changed

AUTOSAR Adaptive Linux Executable Toolchain
Behavior change

Beginning in R2022b, you can use the AUTOSAR Adaptive Linux Executable toolchain only if
the Embedded Coder Support Package for Linux® Applications is installed.

For more information, see Build Out of the Box Linux Executable from AUTOSAR Adaptive Model.

R2022b

2-12

https://www.mathworks.com/help/releases/R2022b/autosar/ug/create-linux-executable.html

R2022a

Version: 2.6

New Features

Bug Fixes

Compatibility Considerations

3

AUTOSAR software component modeling
To improve AUTOSAR classic component modeling, R2022a supports:

• Classic Platform Release 19-11
• PostBuild variants in ARXML
• Basic Software component event failure and recovery simulation and testing
• NvBlockNeeds parameters to read and write data at startup and shutdown
• Removal of unused data types and related elements in exported ARXML
• Improved ARXML for lookup table breakpoints
• Code replacement enhancements for blocks that do not overflow
• Generate Calibration Files tool for Classic AUTOSAR

AUTOSAR Classic Platform Release 19-11

R2022a extends support of the AUTOSAR Classic Platform to include Release 19-11. AUTOSAR
Blockset supports schema version R19-11 for import and export of ARXML files and generation of
AUTOSAR-compliant C code.

If you import schema R19-11 ARXML files into Simulink, the ARXML importer detects and uses the
schema version and sets the schema version parameter in the model.

If you create an AUTOSAR classic model in Simulink, the initial default schema version is 4.3. To set
the schema version to R19-11, use the model configuration parameter Generate XML file for
schema version or an equivalent function call. For more information, see Select AUTOSAR Classic
Schema.

Postbuild Conditions for Startup Variants

R2022a allows you to import, export, and model postbuild conditions for AUTOSAR startup variants
modeled in Simulink. You can model postbuild binding times for AUTOSAR components by
configuring variant blocks with a Startup activation time, a MATLAB variable condition, and variant
logic defined by expressions. Postbuild variant points are resolved with a call to the run time
environment (RTE) after the code has been compiled and deployed on an electronic control unit
(ECU). Optionally, you can elect generate the ARXML for these postbuild conditions as a package. For
more information, see Configure Postbuild Variant Conditions for AUTOSAR Software Components.

Basic Software component event failure testing and simulation with Dem Status Override
and Dem Status Inject blocks

R2022a introduces two new blocks, Dem Status Override and Dem Status Inject, to enable the
simulation and testing of a Basic Software Component event failure and recovery. The Dem Status
Override block enables you to override and set the status of an event in a modeled basic software
component so that you can simulate and test specific behavior to quickly gain coverage. The Dem
Status Inject block block enables you to simulate an instantaneous external event so that you can test
the robustness of a basic software component and whether it can recover, or heal, itself from a
failure.

For more information, about the blocks, see Dem Status Override and Dem Status Inject. For more
information about how to use the blocks for simulation and testing, see Simulate and Verify AUTOSAR
Component Behavior by Using Diagnostic Fault Injection.

R2022a

3-2

https://www.mathworks.com/help/releases/R2022a/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2022a/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2022a/autosar/ug/configure-post-build-variant-conditions.html
https://www.mathworks.com/help/releases/R2022a/autosar/ref/demstatusoverride.html
https://www.mathworks.com/help/releases/R2022a/autosar/ref/demstatusinject.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/simulate-and-verify-component-behavior-fault-injection.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/simulate-and-verify-component-behavior-fault-injection.html

Configure NvBlockNeeds parameters StoreAtShutdown and RestoreAtStart

R2022a introduces the ability to configure NVRAM block data to be read out at startup and written
away at shutdown by setting the NVBlockNeeds parameters RestoreAtStart and StoreAtShutdown.
Additionally, these parameters are included in the exported ARXML. For more information, see
Configure AUTOSAR Per-Instance Memory.

Export ARXML without unused data types and related elements

Starting in R2022a, data types and related elements that are not used in the model are removed from
the exported ARXML files. Removal of these unused data types and elements help prevent data type
conflicts with other ARXML files when imported to third-party authoring tools and makes it easier to
compare ARXML files in incremental workflows. For more information, see Generate AUTOSAR C
Code and XML Descriptions.

Improved breakpoint ARXML and mapping support for model hierarchies

R2022a enhances Simulink.Breakpoint objects as model arguments to bring these objects on par
with Simulink.Parameter and Simulink.LookupTable objects. You can now:

• Use Simulink.Breakpoint objects in model hierarchies to generate AUTOSAR COM_AXIS
Lookup tables in ARXML

• Import, export, and map Simulink.Breakpoint objects in the model workspace as port or per-
instance parameters

• Import, export, and map Simulink.Breakpoint objects in sub-component models as per-
instance parameters

Test harness support is also provided for this new breakpoint functionality. For more information, see
Configure Lookup Tables for AUTOSAR Calibration and Measurement.

Code replacement enhancements for blocks that do not overflow

In R2022a, the AUTOSAR 4.0 code replacement library replaces code from more blocks for these
categories of entries:

• Multiplication
• Division
• Combination of multiplication and division
• Combination of multiplication and shift right

Compatibility Considerations
Previously, these entries in the AUTOSAR 4.0 library replaced code from the Product block only when
Saturate on integer overflow was selected for the block. In R2022a, these entries also replace code
from Product blocks that do not overflow, regardless of whether Saturate on integer overflow is
selected.

Generate Calibration Files tool for Classic AUTOSAR

R2022a extends support of Generate Calibration Files tool for Classic AUTOSAR platform.
The Generate Calibration Files supports generation and customization of ASAP2 file and
generation of CDFX file.

 Functionality being removed or changed

3-3

https://www.mathworks.com/help/releases/R2022a/autosar/ug/use-data-store-memory-blocks-to-specify-per-instance-memory.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/example-generate-autosar-code-and-xml-descriptions.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/example-generate-autosar-code-and-xml-descriptions.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html

For more information, see Generate ASAP2 and CDF Calibration Files (Embedded Coder).

AUTOSAR adaptive software component modeling
To improve AUTOSAR adaptive component modeling, R2022a supports:

• ara::com::method support
• Event-Based execution modeling and code generation
• Scoped enum classes
• Nested namespace customization in generated C++ code
• DDS bindings for Adaptive AUTOSAR applications

ara::com::method support

R2022a adds ara::com method support. For more information, see Model AUTOSAR Adaptive
Service Communication.

Event-based execution modeling and code generation for ara::com events

R2022a enables you to model and generate code for event-triggered execution in AUTOSAR adaptive
applications. You can now model software components that execute only when an event arrives.
Previously, you could only model message or event communication by periodically polling for an
event, which introduced the overhead of executing a runnable even when an event was not present.
Event-triggered execution eliminates this overhead by executing a runnable only when an event
arrives. You can also generate C++ code from these applications that is compliant with the AUTOSAR
adaptive schema 00046-00048. For more information, see Model AUTOSAR Adaptive Service
Communication.

Scoped enum classes for C++11 code generation

By default, R2022a uses C++11 style scoped enum classes in generated AUTOSAR adaptive code.
Enum classes help facilitate easier integration by minimizing the need for adjustments to the
generated code. For more information, see C++11 Style Scoped Enum Classes Generated for
AUTOSAR Adaptive Applications.

Nested namespace customization for C++ code generation

You can now customize the generated C++ code from your modeled AUTOSAR adaptive application
to generate the model class in a nested namespace. For more information, see Configure AUTOSAR
Adaptive Code Generation.

Enable ara::com DDS binding for Adaptive AUTOSAR applications

Starting from R2022a, the generated code for adaptive AUTOSAR model supports DDS binding for
ara::com enabling communication between adaptive AUTOSAR applications. This feature is
supported out of the box with AUTOSAR Adaptive Linux Executable toolchain. The generated
ServiceInstanceManifest.arxml contains DDS deployment artifacts. The applications
communicating with each other are expected to have event deployment artifacts with same TOPIC-
NAME and DOMAIN-ID.

For more information, see Build Out of the Box Linux Executable from AUTOSAR Adaptive Model.

R2022a

3-4

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/configure-autosar-adaptive-service-comunication.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/configure-autosar-adaptive-service-comunication.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/configure-autosar-adaptive-service-comunication.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/configure-autosar-adaptive-service-comunication.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/limitations-and-tips-codegen.html#mw_23b942d9-fb49-40c0-baa0-109f15777de9
https://www.mathworks.com/help/releases/R2022a/autosar/ug/limitations-and-tips-codegen.html#mw_23b942d9-fb49-40c0-baa0-109f15777de9
https://www.mathworks.com/help/releases/R2022a/autosar/ug/generating-autosar-code-and-description-files-adaptive.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/generating-autosar-code-and-description-files-adaptive.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/create-linux-executable.html

R2021b

Version: 2.5

New Features

Bug Fixes

Compatibility Considerations

4

AUTOSAR software component modeling
To improve AUTOSAR classic component modeling, R2021b adds:

• AUTOSAR interpolation and math routine library implementations for host code verification
• Improved lookup table ARXML support for model hierarchies
• Lookup table ARXML support for AdminData
• Improved performance for imported compositions by sharing AUTOSAR dictionary

AUTOSAR IFX, IFL, MFX, and MFL library implementations for host code verification

R2021b enhances MATLAB host code verification for AUTOSAR models by providing host
implementations of IFX, IFL, MFX, and MFL routines in the AUTOSAR 4.0 library. The host library
implementations enable software-in-the-loop (SIL) validation for models that trigger code
replacements from the AUTOSAR 4.0 library. For more information, see AUTOSAR 4.0 Library Host
Code Verification.

Improved lookup table ARXML support for model hierarchies

R2021b enhances ARXML export for lookup tables in model hierarchies. When a referenced model
contains a lookup table, and the containing top model passes lookup table parameter values to the
model arguments of the referenced model, top-model export now generates application data types for
the lookup table parameters.

Parameterizing instances of reusable referenced model lookup tables allows you to place multiple
instances of lookup table sub-units in an AUTOSAR model hierarchy and supports sub-unit level
testing. For more information, see Parameterizing Instances of Reusable Referenced Model Lookup
Tables.

Lookup table ARXML support for AdminData record layout annotations

R2021b enhances import and export of ARXML lookup table descriptions to support AdminData
record layout annotations. AdminData record layout annotations can be used with third-party
AUTOSAR tools. For more information, see Exporting AdminData Record Layout Annotations.

Improved performance for imported compositions by sharing AUTOSAR dictionary

To improve the performance of common tasks in AUTOSAR composition modeling, composition
import can now store sharable component properties, such as interfaces and data types, into a
Simulink data dictionary. Components within the composition can then share the stored properties.

For compositions that contain more than 20 software components, sharing AUTOSAR properties
among components can significantly improve performance for composition workflows, including
import, dictionary navigation, AUTOSAR validation, and code generation. Limiting property
replication among components can reduce component model file sizes.

To configure a composition import to store AUTOSAR properties for component sharing, call the
ARXML import function createCompositionAsModel and specify the 'DataDictionary' and
'ShareAUTOSARProperties' arguments. For more information, see Import AUTOSAR Composition
and Share AUTOSAR Dictionary and the createCompositionAsModel reference page.

R2021b

4-2

https://www.mathworks.com/help/releases/R2021b/autosar/ug/code-replacement-for-autosar.html#mw_3add85d2-5b28-49ec-a046-a7c7fdfbbf5d
https://www.mathworks.com/help/releases/R2021b/autosar/ug/code-replacement-for-autosar.html#mw_3add85d2-5b28-49ec-a046-a7c7fdfbbf5d
https://www.mathworks.com/help/releases/R2021b/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html#mw_0390da62-01cc-4e97-9c54-a258e97c695b
https://www.mathworks.com/help/releases/R2021b/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html#mw_0390da62-01cc-4e97-9c54-a258e97c695b
https://www.mathworks.com/help/releases/R2021b/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html#mw_5dbaaf48-4b10-40cb-afc5-5f60ebf4a492
https://www.mathworks.com/help/releases/R2021b/autosar/ref/arxml.importer.createcompositionasmodel.html#mw_2d188faa-23b6-4c61-8f4b-bf83e0107731
https://www.mathworks.com/help/releases/R2021b/autosar/ref/arxml.importer.createcompositionasmodel.html#mw_2d188faa-23b6-4c61-8f4b-bf83e0107731
https://www.mathworks.com/help/releases/R2021b/autosar/ref/arxml.importer.createcompositionasmodel.html

AUTOSAR adaptive software component modeling
To improve AUTOSAR adaptive component modeling, R2021b supports:

• Persistent memory (ara::per) for adaptive applications
• C++ reference types in the generated code
• Name and namespace customization for C++ model classes

Persistent memory for adaptive applications

Starting in R2021b, adaptive applications support code generation for persistent memory
(ara::per). Persistent memory provides a mechanism to store information in the nonvolatile
memory of an ECU. The information is available over boot and ignition cycles.

For more information, see Model AUTOSAR Adaptive Persistent Memory.

C++ reference types in the generated code

To better adhere to the AUTOSAR adaptive standard, C++ code generation now supports reference
data types. Reference data types help the generated code integrate with AUTOSAR adaptive function
calls, increase the readability of the generated C++ code, improve the compiler optimization, and
enable the generated variables to be more tightly scoped. For more information, see Code
Generation.

Name and namespace customization for C++ model classes

You can now control the generated C++ class names and namespaces for your AUTOSAR adaptive
applications. For more information about how to configure these aspects of the generated code, see
Configure AUTOSAR Adaptive Code Generation.

Export software component mapping for AUTOSAR ECU
R2021b adds the ability to export ECU extracts from compositions in an AUTOSAR architecture
model. ECU extracts are an important input to AUTOSAR ECU configuration. In an AUTOSAR
architecture, a top-level composition can model the software components mapped to one AUTOSAR
ECU. To create a software description of the ECU-scoped system, you export an ECU extract from the
composition.

In an open architecture model, you can export ARXML by using the Simulink Toolstrip, the software
architecture canvas, or the export function. For example, from the Modeling tab, select Export >
Generate Code and ARXML. In the Export Composition dialog box, select the option Export ECU
extract.

 Functionality being removed or changed

4-3

https://www.mathworks.com/help/releases/R2021b/autosar/ug/model-adaptive-persistency.html
https://www.mathworks.com/help/releases/R2021b/autosar/autosar-code-generation-adaptive.html
https://www.mathworks.com/help/releases/R2021b/autosar/autosar-code-generation-adaptive.html
https://www.mathworks.com/help/releases/R2021b/autosar/ug/generating-autosar-code-and-description-files-adaptive.html
https://www.mathworks.com/help/releases/R2021b/autosar/ref/autosar.arch.model.export.html

To generate the ECU extract, the software automatically maps the software components in the
composition to an ECU. If the composition contains nested compositions, the software uses a
flattened version of the composition hierarchy, containing only components. Composition export
generates the ECU extract into the file System.arxml, which is located in the composition folder.

For more information, see Export Composition ECU Extract and the export reference page.

AUTOSAR mapping workflow enhancements
Starting in R2021b, you can now configure additional code mapping properties from within the Code
Mappings editor. These properties were previously accessible only in the Property Inspector.

To configure the properties, click the icon in the row containing the element you want to
configure.

The Code Mappings editor now also displays data related to In Bus Element and Out Bus Element
blocks in a hierarchical view. In previous releases, this data displayed as a flat list in the Code
Mappings editor.

Specify message queue properties on AUTOSAR component-level bus
element ports
In R2021b, Simulink root-level In Bus Element blocks can provide receive message queue properties.
If your AUTOSAR component model uses message communication, you can use an In Bus Element
block to specify message queue attributes such as capacity, message sorting policy, and message
overwriting policy.

For AUTOSAR architecture models, the software automatically configures In Bus Element blocks with
message queue properties when you:

• Import an ARXML software component that uses message communication.
• Link to a classic implementation model that uses message communication.

Functionality being removed or changed
AUTOSAR adaptive default name for a model class is the model name

Beginning in R2021b, the default name for AUTOSAR adaptive model classes are the names of the
models. Previously, the class names in the generated code used a default class name of the form
modelModelClass. The new default is of the form model.

This change to the generated class names may cause integration scripts that use the class names to
break. Update integration scripts to the new generated class names. For more information, see Code
Generation.

R2021b

4-4

https://www.mathworks.com/help/releases/R2021b/autosar/ug/export-composition-and-component-arxml-descriptions.html#mw_955090a2-9a09-4f6e-beb9-318555150720
https://www.mathworks.com/help/releases/R2021b/autosar/ref/autosar.arch.model.export.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2021b/autosar/autosar-code-generation-adaptive.html
https://www.mathworks.com/help/releases/R2021b/autosar/autosar-code-generation-adaptive.html

R2021a

Version: 2.4

New Features

Bug Fixes

5

AUTOSAR software component modeling
To improve AUTOSAR classic component modeling, R2021a adds:

• Simulink messaging over bus ports for queued S-R communication
• Export-function runnable modeling with Simulink bus ports
• Variant conditions and nonvirtual buses with Simulink bus ports
• API control of default internal data packaging
• Enhanced ARXML support for lookup tables

Simulink messaging over bus ports for queued S-R communication

AUTOSAR component models implement queued sender-receiver (S-R) communication by sending
and receiving Simulink messages over root-level ports. In R2021a, you can use Simulink bus ports to
model AUTOSAR message-based communication.

Bus ports enable intuitive modeling of AUTOSAR communication ports, interfaces, and groups of data
elements. If you model AUTOSAR ports by using In Bus Element and Out Bus Element blocks, and
type the bus ports by using bus objects, basic properties of AUTOSAR ports, interfaces, and data
elements are configured without using the AUTOSAR Dictionary. To manage component interfaces,
you configure Simulink bus objects.

AUTOSAR architecture models can link queued S-R component models that have bus ports.

For more information, see Configure AUTOSAR Ports By Using Simulink Bus Ports, Messages, and
Configure AUTOSAR Queued Sender-Receiver Communication.

Components with export-function runnables support Simulink bus ports

Simulink modeling styles for AUTOSAR runnables include export-function modeling. In R2021a,
AUTOSAR components that model runnables by using exported functions can use Simulink bus ports.

For example, this adaptation of example model autosar_swc_slfcns uses bus ports. Function-call
subsystem SS1 models a periodic runnable and generates an exported function.

R2021a

5-2

https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-autosar-ports-using-sl-bus-ports.html
https://www.mathworks.com/help/releases/R2021a/simulink/asynchronous-communication-using-messages.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-autosar-queued-sender-receiver-communication.html

In AUTOSAR architecture models, you can link component models that use the export-function
modeling style and then use the Schedule Editor to schedule the simulation.

For more information, see Configure AUTOSAR Ports By Using Simulink Bus Ports and Model
AUTOSAR Software Components.

Components with Simulink bus ports support variant conditions and nonvirtual buses

R2021a improves AUTOSAR port modeling by supporting variant conditions and nonvirtual buses
with Simulink bus ports. In AUTOSAR software component models that model AUTOSAR ports by
using bus ports, you can:

• Use variant conditions on component ports.
• Use nonvirtual buses on component interface data elements.

AUTOSAR architecture models can link the resulting component implementations.

For more information, see Configure AUTOSAR Ports By Using Simulink Bus Ports.

Default data packaging for AUTOSAR internal variables

R2021a provides functions to control the default data packaging used for internal variables in the
generated code for an AUTOSAR component model. You can specify that internal data store, signal,
and state data is packaged:

• With or without packing it in a structure
• With private or public visibility

For more information, see Specify Default Data Packaging for AUTOSAR Internal Variables and the
function ref pages getInternalDataPackaging and setInternalDataPackaging.

Lookup table ARXML support for row-major layout and improved tool interoperability

R2021a enhances ARXML export and import of lookup tables to support row-major array layout and
improved interoperability with third-party AUTOSAR authoring tools.

To specify row-major order for lookup table values in the linear memory of an ECU, ARXML
descriptions of multidimensional lookup tables must specify a SwRecordLayout with the CATEGORY
set to ROW_DIR. In R2021a:

• Exporting Simulink row-major multidimensional lookup tables generates ARXML lookup table
descriptions with the SwRecordLayout category set to ROW_DIR.

• Importing ARXML files with only row-major multidimensional lookup table descriptions creates
Simulink lookup tables with Array layout set to Row-major and Use algorithms optimized for
row-major array layout enabled.

Third-party AUTOSAR authoring tools expect exported lookup table descriptions to contain
ApplicationDataTypes with VALUE-AXIS-DATA-TYPE-REF and INPUT-VARIABLE-TYPE-REF
elements. VALUE-AXIS-DATA-TYPE-REF and INPUT-VARIABLE-TYPE-REF are expected to reference
table value and breakpoint data types specified in Simulink lookup table blocks. In R2021a:

• Exporting Simulink lookup tables generates ARXML lookup table descriptions containing
ApplicationDataTypes that have VALUE-AXIS-DATA-TYPE-REF and INPUT-VARIABLE-TYPE-
REF elements.

 Functionality being removed or changed

5-3

https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-autosar-ports-using-sl-bus-ports.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/autosar-software-components.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/autosar-software-components.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-autosar-ports-using-sl-bus-ports.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_d2e293e9-5017-4069-9d1f-b31aa767b4f1
https://www.mathworks.com/help/releases/R2021a/autosar/ref/autosar.api.getsimulinkmapping.getinternaldatapackaging.html
https://www.mathworks.com/help/releases/R2021a/autosar/ref/autosar.api.getsimulinkmapping.setinternaldatapackaging.html

• Importing ARXML lookup table descriptions creates Simulink lookup tables that have table value
and breakpoint data types configured based on imported ApplicationDataType settings.

For more information on modeling AUTOSAR lookup tables, see Model AUTOSAR Calibration
Parameters and Lookup Tables and Configure Lookup Tables for AUTOSAR Measurement and
Calibration.

AUTOSAR adaptive software component modeling
To improve AUTOSAR adaptive component modeling, R2021a adds:

• Adaptive Platform Release 19-11 support
• Simulink messaging over bus ports for event-based communication
• Enhanced CMake tooling for adaptive models
• Run-time logging (ara::log) for adaptive executables

AUTOSAR Adaptive Platform Release 19-11

R2021a extends support of the AUTOSAR Adaptive Platform to include Release 19-11. AUTOSAR
Blockset supports the 000048 (R19-11) schema for import and export of ARXML files and generation
of AUTOSAR-compliant C++ code.

• In R2021a, 000048 (R19-11) is the default schema version for AUTOSAR adaptive models created
in Simulink.

• If you import schema 000048 (R19-11) ARXML files into Simulink, the ARXML importer detects
and uses the schema version and sets the schema version parameter in the model.

• Building an AUTOSAR adaptive model using schema 000048 (R19-11) generates ARXML
descriptions and C++ code that comply with Adaptive Platform Release 19-11.

For more information on AUTOSAR schema versions, see Select AUTOSAR Schema.

Simulink messaging over bus ports for event-based communication

AUTOSAR adaptive models implement event-based communication by sending and receiving Simulink
messages over root-level ports. In R2021a, you can use Simulink bus ports to model AUTOSAR
message-based communication.

Bus ports enable intuitive modeling of AUTOSAR communication ports, interfaces, and groups of data
elements. If you model AUTOSAR ports by using In Bus Element and Out Bus Element blocks, and
type the bus ports by using bus objects, basic properties of AUTOSAR ports, interfaces, and events
are configured without using the AUTOSAR Dictionary. To manage component interfaces, you
configure Simulink bus objects.

For more information, see Configure AUTOSAR Ports By Using Simulink Bus Ports, Messages, and
Model AUTOSAR Adaptive Service Communication.

R2021a

5-4

https://www.mathworks.com/help/releases/R2021a/autosar/ug/calibration-parameters.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/calibration-parameters.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/generating-autosar-code-and-description-files-adaptive.html#mw_867039a4-d1c4-44c4-a4c9-cf3227008028
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-autosar-ports-using-sl-bus-ports.html
https://www.mathworks.com/help/releases/R2021a/simulink/asynchronous-communication-using-messages.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-autosar-adaptive-service-comunication.html

Enhanced CMake tooling for adaptive models

R2021a improves the CMakeLists.txt generation framework for AUTOSAR adaptive models. You
can use modern CMake tooling to build Linux standalone executables, static libraries, and shared
libraries.

For more information, see Build Library or Executable from AUTOSAR Adaptive Model and Build Out
of the Box Linux Executable from AUTOSAR Adaptive Model.

Run-time logging (ara::log) for adaptive executables

Starting in R2021a, adaptive applications can forward event logging information to a console, file, or
network, as defined in the AUTOSAR Specification of Diagnostic Log and Trace. You can
collate and analyze log data from multiple applications.

For more information, see Configure Run-Time Logging for AUTOSAR Adaptive Executables.

AUTOSAR architecture modeling
To improve AUTOSAR architecture modeling, R2021a adds:

• ARXML support for execution order constraints at architecture (VFB) level
• Model Linker app for meeting component model linking requirements

ARXML support for execution order constraints at architecture (VFB) level

In an AUTOSAR architecture model, you can use the Schedule Editor to schedule and specify the
execution order of AUTOSAR component runnables. R2021a adds support for ARXML descriptions of
execution order constraints at Virtual Function Bus (VFB) level. You can:

• Import VFB-level execution order constraints from ARXML files.
• Open an AUTOSAR architecture model and use the Schedule Editor to modify the execution order

of component runnables. The editor displays every component runnable in the composition
hierarchy.

• As part of composition export, export VFB-level execution order constraints to an ARXML timing
module, modelname_timing.arxml.

For more information, see Schedule Component Runnables.

Model Linker app for meeting component model linking requirements

R2021a provides an AUTOSAR Model Linker app, which opens as needed to help you link AUTOSAR
component blocks to existing Simulink implementation models.

In an architecture model, when you initiate linking of an AUTOSAR Software Component block to an
implementation model, the software verifies whether the specified model meets linking requirements.
For example, the implementation model must use the same target as the architecture model, use a
fixed-step solver, and use root-level bus ports.

If the implementation model does not meet one or more of the linking requirements, the software
opens the AUTOSAR Model Linker app, which offers fixes for the unmet requirements. When you
click Fix All, the software fixes the unmet requirements and finishes linking the component block to
the model.

 Functionality being removed or changed

5-5

https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-cmake-target.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/create-linux-executable.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/create-linux-executable.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/ara_logging.html
https://www.mathworks.com/help/releases/R2021a/autosar/ug/configure-scheduling-and-simulation.html#mw_136545f3-1245-43a6-a1ce-a8955eb5e586

For more information, see Link to Implementation Model.

R2021a

5-6

https://www.mathworks.com/help/releases/R2021a/autosar/ug/link-new-or-existing-models-or-import-arxml-software-components.html#mw_5881b429-06a5-4880-8231-394904860b4c

R2020b

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

6

AUTOSAR software component modeling
To improve AUTOSAR classic component modeling, R2020b adds:

• Classic Platform Release 4.4 support
• Enhanced port parameter modeling
• IncludedDataTypeSets for internal data types
• ARXML descriptions for execution order constraints
• Enhanced signal data mapping

Support for AUTOSAR Classic Platform Release 4.4

R2020b extends support of the AUTOSAR Classic Platform to include Release 4.4. AUTOSAR Blockset
supports schema version 4.4 for import and export of ARXML files and generation of AUTOSAR-
compliant C code.

If you import schema version 4.4 ARXML files into Simulink, the ARXML importer detects and uses
the schema version and sets the schema version parameter in the model. For more information on
schema import and export, see Select AUTOSAR Schema.

Port parameter modeling enhancements

R2020b enhances the workflow for modeling AUTOSAR port parameters for port-based parameter
communication. In Simulink, you can model the receiver side of AUTOSAR parameter communication.

To enhance port parameter modeling, R2020b extends model workspace parameter mapping to
support AUTOSAR port-based parameters. By using the Parameters tab of the Code Mappings editor
or the mapParameter function, you can map Simulink model workspace parameters to AUTOSAR
receiver port parameters. Mappable parameters include Simulink parameter, lookup table, and
breakpoint objects.

Because port parameter data is scoped to the model workspace and the AUTOSAR component:

• Different components can use the same parameter names without naming conflicts.
• An AUTOSAR composition can contain multiple instances of a parameter receiver component,

each with instance-specific port parameter data values.

For more information, see Port Parameters and Configure AUTOSAR Port Parameters for
Communication with Parameter Component.

Import and export AUTOSAR IncludedDataTypeSets

In R2020b, you can import and export ARXML descriptions of AUTOSAR included data type sets
(IncludedDataTypeSets). An IncludedDataTypeSet defines AUTOSAR data types that are
internal to a component and not present in the component interface descriptions. Multiple
components can import an IncludedDataTypeSet to share a common set of internal data types.

In an AUTOSAR software component model, you can configure internal data types to be exported in
ARXML IncludedDataTypeSets and generated in C header files. For more information, see
Included Data Type Sets and Configure Internal Data Types for AUTOSAR IncludedDataTypeSets.

R2020b

6-2

https://www.mathworks.com/help/releases/R2020b/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2020b/autosar/ref/autosar.api.getsimulinkmapping.mapparameter.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/model-autosar-component-behavior.html#mw_cb9424a6-78de-4c97-a5c7-ef39a5565a2a
https://www.mathworks.com/help/releases/R2020b/autosar/ug/configure-autosar-parameter-communication.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/configure-autosar-parameter-communication.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/model-autosar-component-behavior.html#mw_01773eb5-5a4c-4f91-8af7-e5a1f76e6339
https://www.mathworks.com/help/releases/R2020b/autosar/ug/configure-autosar-component-internal-data-types-for-includeddatatypeset-export.html

ARXML support for execution order constraints

In an AUTOSAR model, you can use the Schedule Editor to schedule and specify the execution order
of AUTOSAR component runnables. R2020b adds support for ARXML descriptions of execution order
constraints. You can:

• Import execution order constraints from ARXML files.
• Open an AUTOSAR component model and use the Schedule Editor to modify the execution order

of runnables.
• Export execution order constraints to ARXML files.
• Update execution order constraints in an AUTOSAR component model by importing ARXML

changes.

For more information, see Configure AUTOSAR Runnable Execution Order.

Signal data mapping enhancements

R2020b enhances the workflow for mapping Simulink signals to AUTOSAR variables for run-time
calibration. You can now selectively add or remove model signals from AUTOSAR component signal
mapping.

In the AUTOSAR Component Designer app, use a Code Mappings editor button or a model cue:

• In the model canvas, select one or more signals. Open the Code Mappings editor, Signals/States
tab, and click an add or remove button.

• In the model canvas, select a signal. Place your cursor over the displayed ellipsis and select an
add or remove model cue.

Alternatively, from a MATLAB script or command line, call function addSignal or removeSignal.

Previously, for AUTOSAR components that were created in Simulink (bottom-up workflow), the initial
default signal mapping included all named signals in the model. In R2020b, named signals are no
longer mapped by default. After creating a mapped AUTOSAR component in Simulink, you selectively
add and map signals.

For AUTOSAR components imported or updated from ARXML (round-trip workflow), the signal
mapping workflow is unchanged. After import, you add content to the component model to implement
functionality. Updating the model mapping to reflect Simulink changes automatically creates and
maps signals to represent imported AUTOSAR variables.

For more information, see Map Block Signals and States to AUTOSAR Variables.

AUTOSAR adaptive software component modeling
To improve AUTOSAR adaptive component modeling, R2020b adds:

• Linux executables for adaptive models
• ASAP2 file generation enhancements

 Functionality being removed or changed

6-3

https://www.mathworks.com/help/releases/R2020b/autosar/ug/configure-autosar-runnable-execution-order.html
https://www.mathworks.com/help/releases/R2020b/autosar/ref/autosar.api.getsimulinkmapping.addsignal.html
https://www.mathworks.com/help/releases/R2020b/autosar/ref/autosar.api.getsimulinkmapping.removesignal.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_d2893731-11bc-4ff4-ae5b-fe59935e8015

Linux executables for adaptive models

In R2020b, you can create a Linux executable for AUTOSAR adaptive models. By selecting the
AUTOSAR Adaptive Linux Executable toolchain for an AUTOSAR adaptive component model,
you can create an AUTOSAR executable and run it as a standalone application.

For more information, see Create Linux Executable for Run-Time Calibration.

ASAP2 file generation enhancements

In R2020b, you can configure ASAP2 (A2L) file generation to specify an ASAP2 file version and
whether to exclude or include comments.

• Previously, you could generate only version 1.31 ASAP2 files. Now, in the ASAP2 Generator app,
you can select a supported ASAP2 file version. The default version is 1.71.

• Previously, the generated ASAP2 file included comments. Now you can choose to exclude
comments.

For more information, see Configure AUTOSAR Adaptive Data for Run-Time Measurement and
Calibration.

Import AUTOSAR software composition into architecture model
To improve AUTOSAR software architecture modeling, R2020b allows you to import ARXML
descriptions of AUTOSAR software compositions into architecture models. Previously, you could only
import ARXML composition descriptions outside architecture models, by using the ARXML importer
function createCompositionAsModel.

In an open AUTOSAR architecture model with no functional content, you can import an AUTOSAR
software composition by using either an app or a function:

• On the Modeling tab, select Import from ARXML. The AUTOSAR Importer app opens. Work
through the procedure to import the ARXML composition description and create a composition
editor representation of the composition in the software architecture canvas.

• Call the architecture function importFromARXML.

You can specify composition import options, including:

• Whether to include or exclude AUTOSAR software components, which define composition
behavior.

• Simulink data dictionary in which to place data objects for imported AUTOSAR data types.
• Names of existing Simulink behavior models to link to imported AUTOSAR software components.
• Component options to apply when creating Simulink behavior models for imported AUTOSAR

software components.

For more information, see Import AUTOSAR Composition from ARXML, importFromARXML, and the
example Import AUTOSAR Composition into Architecture Model.

Functionality being removed or changed
Support for AUTOSAR Classic Platform schema versions 3.x and 2.1 has been removed
Errors

R2020b

6-4

https://www.mathworks.com/help/releases/R2020b/autosar/ug/create-linux-executable.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/export-asap2-file-for-data-calibration.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/export-asap2-file-for-data-calibration.html
https://www.mathworks.com/help/releases/R2020b/autosar/ref/arxml.importer.createcompositionasmodel.html
https://www.mathworks.com/help/releases/R2020b/autosar/ref/autosar.arch.model.importfromarxml.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/import-autosar-composition-from-arxml.html
https://www.mathworks.com/help/releases/R2020b/autosar/ref/autosar.arch.model.importfromarxml.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/example-import-autosar-composition-into-architecture-model.html

R2020b removes support for AUTOSAR Classic Platform schema versions 3.x and 2.1. Validating an
AUTOSAR model that uses schema version 3.x or 2.1 generates an error, which prevents code
generation.

Use schema version 4.0 or later instead. The default schema version for new AUTOSAR models is 4.3.
For more information, see Select AUTOSAR Schema.

 Functionality being removed or changed

6-5

https://www.mathworks.com/help/releases/R2020b/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1

R2020a

Version: 2.2

New Features

Bug Fixes

Compatibility Considerations

7

AUTOSAR software component modeling
To improve AUTOSAR classic component modeling, R2020a adds:

• Basic Software blocks for modeling function inhibition
• Export of multidimensional matrices for AUTOSAR variables

Model function inhibition by using Basic Software blocks

For the AUTOSAR Classic Platform, AUTOSAR Blockset provides Basic Software (BSW) blocks, which
allow you to model software component calls to BSW services that run in the AUTOSAR run-time
environment. BSW services include NVRAM Manager and Diagnostic Event Manager.

R2020a extends BSW service support to include component calls to Function Inhibition Manager
(FiM) services. As defined in the AUTOSAR specification, the Function Inhibition Manager provides a
control mechanism for selectively inhibiting (that is, deactivating) function execution in software
component runnables, based on function identifiers (FIDs) with inhibition conditions. For example, an
FID can represent functionality that must be stopped if a specific failure occurs.

The Function Inhibition Manager is closely related to the Diagnostic Event Manager (Dem), because
inhibition conditions can be based on the status of diagnostic events. For example, if a sensor failure
event is reported to the Diagnostic Event Manager, the Function Inhibition Manager can inhibit the
associated function identifier and stop execution of the corresponding functionality.

R2020a adds FiM and Dem blocks that allow you to:

• Query the status of function inhibition conditions.
• Configure function inhibition criteria based on diagnostic event status.
• Define operation cycles to scope failures to a time period.

For more information, see Configure Calls to AUTOSAR Function Inhibition Manager Service.

Export multidimensional matrices for AUTOSAR variables

For an AUTOSAR component model with multidimensional arrays, if you set the model configuration
parameter Array layout to Row-major, you can preserve dimensions of multidimensional arrays in
the generated C code. Preserving array dimensions in the generated code can enhance code
integration.

R2020a improves ARXML export to honor the row-major setting for multidimensional signals and
states mapped to AUTOSAR variables. If Array layout is set to Row-major, ARXML export no longer
flattens multidimensional matrices in the generated descriptions for signals and states mapped to
AUTOSAR variables.

In the generated C code, access to the variable data depends on the type of storage. For internal
storage, such as static memory, the code uses multidimensional indexing. For external storage, the
code calls AUTOSAR Rte functions, which use one-dimensional indexing.

When you use Row-major array layout, you can disregard the setting of the AUTOSAR model
configuration parameter Support root-level matrix I/O using one-dimensional arrays. Support
root-level matrix I/O using one-dimensional arrays provides a workaround for exporting
multidimensional matrices in Column-major array layout.

R2020a

7-2

https://www.mathworks.com/help/releases/R2020a/autosar/ug/configure-calls-to-autosar-function-inhibition-manager-service.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/array-layout.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/support-root-level-matrix-io-using-one-dimensional-arrays.html

AUTOSAR adaptive software component modeling
To improve AUTOSAR adaptive component modeling, R2020a adds:

• Adaptive Platform Release 19-03 support
• Data calibration based on XCP communication and ASAP2 file generation
• Dynamic service discovery

Support for AUTOSAR Adaptive Platform Release 19-03

R2020a extends support of the AUTOSAR Adaptive Platform to include Release 19-03. AUTOSAR
Blockset supports the 000047 (R19-03) schema for import and export of ARXML files and generation
of AUTOSAR-compliant C++ code.

• In R2020a, 000047 (R19-03) is the default schema version for AUTOSAR adaptive models created
in Simulink.

• If you import schema 000047 (R19-03) ARXML files into Simulink, the ARXML importer detects
and uses the schema version and sets the schema version parameter in the model.

• Building an AUTOSAR adaptive model using schema 000047 (R19-03) generates ARXML
descriptions and C++ code that comply with Adaptive Platform Release 19-03.

For more information on AUTOSAR schema versions, see Select AUTOSAR Schema.

Calibrate data for adaptive applications by using XCP and ASAP2

R2020a allows you to configure run-time calibration of adaptive application data based on XCP Slave
communication and ASAP2 (A2L) file generation. The XCP and ASAP2 capabilities are defined outside
the Adaptive Platform (AP) specifications, which as of Release 19-03 do not address data calibration.

As part of generating and deploying adaptive code, you can configure interfaces for XCP Slave
communication in the generated C++ code and export A2L files containing model data for
measurement and calibration.

Before deploying adaptive code, you can:

• Use the Configuration Parameters dialog box to configure the model, to generate XCP Slave
function calls in adaptive C++ code.

• Use the ASAP2 Generator app to configure and generate an ASAP2 (A2L) file that describes model
data for measurement and calibration.

For more information, see Configure AUTOSAR Adaptive Data for Run-Time Measurement and
Calibration.

Find adaptive services by using dynamic discovery

R2020a allows you to configure applications to use dynamic discovery to subscribe to adaptive
services as they become available. Previously, applications found and subscribed to adaptive services
one time during initialization. One-time discovery may require adaptive services to start before
applications and prevent applications from using new services as they become available. Now you can

 Functionality being removed or changed

7-3

https://www.mathworks.com/help/releases/R2020a/autosar/ug/generating-autosar-code-and-description-files-adaptive.html#mw_867039a4-d1c4-44c4-a4c9-cf3227008028
https://www.mathworks.com/help/releases/R2020a/autosar/ug/export-asap2-file-for-data-calibration.html
https://www.mathworks.com/help/releases/R2020a/autosar/ug/export-asap2-file-for-data-calibration.html

configure, in your model or programmatically, the service discovery mode of each required service
port as OneTime or DynamicDiscovery.

For more information, see Configure AUTOSAR Adaptive Service Discovery Modes.

AUTOSAR software architecture modeling
To improve AUTOSAR software architecture modeling, R2020a adds:

• Spotlight views for analyzing dependencies
• Programmatic interface for authoring architecture models

Use spotlight view to analyze component or composition dependencies

In an AUTOSAR architecture model, to help analyze component or composition dependencies, you
can create a spotlight view. A spotlight view is a simplified view of an architecture component or
composition that captures its upstream and downstream dependencies.

Here is a spotlight view of component Monitor in AUTOSAR example model
autosar_tpc_composition.

For more information, see View AUTOSAR Component or Composition Dependencies.

Programmatically create and configure architecture models

R2020a adds a programmatic interface for developing AUTOSAR architecture models. Use the
AUTOSAR architecture functions to:

• Create, load, open, save, or close an AUTOSAR architecture model.
• Add, connect, or remove AUTOSAR components, composition, and ports.

R2020a

7-4

https://www.mathworks.com/help/releases/R2020a/autosar/ug/configure-service-discovery-mode.html
https://www.mathworks.com/help/releases/R2020a/autosar/ug/view-autosar-component-or-composition-dependencies.html

• Find AUTOSAR elements and modify properties.
• Define component behavior by creating or linking Simulink models.
• Add Basic Software (BSW) service component blocks for simulating BSW service calls.
• Export composition and component ARXML descriptions and generate component code (requires

Embedded Coder).

For more information, see Software Architecture Modeling and Configure AUTOSAR Architecture
Model Programmatically.

Functionality being removed or changed
Support for AUTOSAR Classic Platform schemas 3.x and 2.1 will be removed
Still runs

Support for AUTOSAR Classic Platform schemas 3.x and 2.1 will be removed in a future release. Use
schema 4.0 or later instead. The default schema for new AUTOSAR models is 4.3. For more
information, see Select AUTOSAR Schema.

 Functionality being removed or changed

7-5

https://www.mathworks.com/help/releases/R2020a/autosar/software-architecture-modeling.html
https://www.mathworks.com/help/releases/R2020a/autosar/ug/configure-autosar-architecture-model-programmatically.html
https://www.mathworks.com/help/releases/R2020a/autosar/ug/configure-autosar-architecture-model-programmatically.html
https://www.mathworks.com/help/releases/R2020a/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1

R2019b

Version: 2.1

New Features

Bug Fixes

8

AUTOSAR Component Designer app and AUTOSAR tab
To support AUTOSAR software component modeling, R2019b introduces an AUTOSAR Component
Designer app and an AUTOSAR tab. The app and the tab support common tasks for component-level
AUTOSAR software development.

The AUTOSAR Component Designer app opens an AUTOSAR code perspective, which displays the
AUTOSAR tab, a help panel, a Property Inspector dialog box, and, directly under the model, the Code
Mappings editor.

To use the AUTOSAR Component Designer app, open a component model. On the Apps tab, click
AUTOSAR Component Designer.

• If the model has a mapped AUTOSAR software component, the app opens the AUTOSAR code
perspective, with the AUTOSAR tab displayed.

• If the model does not have a mapped AUTOSAR software component, the app opens the AUTOSAR
Component Quick Start. Use the AUTOSAR Component Quick Start to configure the model for the
AUTOSAR Classic or Adaptive Platform. When you complete the quick-start procedure and click
Finish, your model opens in the AUTOSAR code perspective, with the AUTOSAR tab displayed.

R2019b

8-2

AUTOSAR software component modeling
To improve AUTOSAR classic component modeling, R2019b adds submodel data mapping, variation
points for calibration data, intuitive port modeling with Simulink bus ports, and runnable scheduling
with the Schedule Editor.

Map calibration data for submodels referenced from component models

In R2019b, the Code Mappings editor adds support for submodels referenced from AUTOSAR
software component models. In an open submodel, you can:

• Configure the submodel as a model referenced from an AUTOSAR software component model. Use
the AUTOSAR Component Quick Start or the AUTOSAR function autosar.api.create.

• In the AUTOSAR code perspective, use the Code Mappings editor to configure the submodel
internal data.

• To generate C code and AUTOSAR XML (ARXML) files that support run-time calibration of the
submodel internal data, open and build the component model that references the submodel.

For more information, see Map Calibration Data for Submodels Referenced from AUTOSAR
Component Models.

Export variation points for calibration data

In R2019b, you can export variation points for AUTOSAR calibration data, including:

• Parameters — Calibration, shared internal, instance-specific, or constant memory
• Per-instance memory — C- typed or AR-typed
• Inter-runnable variables (IRVs) — Implicit or explicit

You can model calibration data in combination with different types of variant conditions. Model the
variant conditions by using Variant Source and Variant Sink blocks, Variant Subsystem blocks, or
model reference variants. When you build your model, the exported AUTOSAR XML (ARXML) files
contain the conditionally used data elements and their variation points.

For more information, see Export Variation Points for AUTOSAR Calibration Data.

Model AUTOSAR ports by using Simulink bus ports

In R2019b, you can model AUTOSAR ports by using Simulink bus ports instead of Simulink signal
ports. Bus port blocks In Bus Element and Out Bus Element can simplify model interfaces. For more
information, see Simplify Bus Interfaces (Simulink).

Bus ports provide a more intuitive way to model AUTOSAR communication ports, interfaces, and
groups of data elements. If you model AUTOSAR ports with In Bus Element and Out Bus Element
blocks, and type the bus ports with bus objects, basic properties of AUTOSAR ports, interfaces, and
data elements are configured without using the AUTOSAR Dictionary. For more information, see
Configure AUTOSAR Ports By Using Simulink Bus Ports.

In an AUTOSAR architecture model, if you link to an existing software component model that uses
root Inport and Outport blocks, the software automatically converts the signal ports to bus ports.

 Functionality being removed or changed

8-3

https://www.mathworks.com/help/releases/R2019b/autosar/ug/map-calibration-data-for-submodels.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/map-calibration-data-for-submodels.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/export-variation-points-for-autosar-calibration-data.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/simplify-subsystem-bus-interfaces.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-autosar-ports-using-sl-bus-ports.html

Configure runnable execution order by using Schedule Editor

In R2019b, you can use the Schedule Editor to schedule and specify the execution order of AUTOSAR
component runnables for simulation. In the Schedule Editor, you can:

• View a graphical representation of runnables as partitions in an AUTOSAR component.
• Directly specify the execution order of runnables.

For more information, see Using the Schedule Editor (Simulink) and Configure AUTOSAR Runnable
Execution Order By Using Schedule Editor.

You can also use the Schedule Editor in AUTOSAR architecture modeling. For more information, see
Configure AUTOSAR Scheduling and Simulation.

Code Mappings editor changes

These changes were made to the Code Mappings editor tabs:

• The Entry-Point Functions tab was renamed to Functions.
• The tab order, from left to right, was changed to Functions, Inports, Outports, Parameters,

Data Stores, Signals/States, Data Transfers, and Function Callers.
• On the Parameters tab, parameter categories were renamed.

• Local parameters was renamed to Model parameters.
• Parameter arguments was renamed to Model parameter arguments.

Also, the Code Mappings editor now retains mapping information when you perform cut/copy/paste or
undo/redo operations on data stores, states, or signals in the model diagram. You can:

• Cut/copy and paste a data store, state, or signal. Code Mapping Editor copies the Mapped To
information for the element. A signal cut or copy must include the originating block.

• Undo/redo an operation on a data store, state, or signal. Mapped To information is retained.

AUTOSAR adaptive software component modeling
To improve AUTOSAR adaptive component modeling, R2019b adds ARXML import, service instance
identification, and memory allocation for event sends.

Import ARXML software descriptions

In R2019b, you can import AUTOSAR XML (ARXML) descriptions of adaptive software components,
service interfaces, and data types into Simulink. Use the ARXML importer to:

• Create an initial Simulink representation of an AUTOSAR adaptive software component.
• Update a mapped AUTOSAR adaptive component model with shared ARXML definitions of service

interfaces and data types.

You can participate in round-trip exchanges of adaptive component ARXML descriptions between
Simulink and other development environments.

For more information, see Import AUTOSAR Adaptive Software Descriptions.

R2019b

8-4

https://www.mathworks.com/help/releases/R2019b/simulink/ug/schedule-editor-overview.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-autosar-runnable-execution-order.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-autosar-runnable-execution-order.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-scheduling-and-simulation.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/import-autosar-adaptive-component.html

Configure service instance identification for ARXML manifest and generated code

In R2019b, you can configure service instance identification for AUTOSAR required and provided
ports. When you build an adaptive software component model:

• Exported ARXML files include a service instance manifest file, which describes port-to-service
instance mapping.

• Generated C++ code uses the configured service instance information in ara::com function calls.

For more information, see Configure AUTOSAR Adaptive Service Instance Identification.

Configure event sends with memory allocation

To send service event data, the AUTOSAR Adaptive Platform supports these methods:

• By reference — The send function uses memory in the application address space. After the send
returns, the application can modify the event data.

• By ara::com allocated memory — The application requests ara::com middleware to allocate
memory for the data. This method avoids data copies by ara::com middleware and can be more
efficient for frequent sends or large amounts of data. But the application loses access to the
memory after the send returns.

In R2019b, you can configure adaptive event sends to request ara::com memory allocation.
Previously, all event sends were by reference.

For more information, see Configure Memory Allocation for AUTOSAR Adaptive Service Data.

AUTOSAR software architecture modeling
R2019b introduces AUTOSAR software architecture modeling for the Classic Platform (requires
System Composer). Using a Simulink Start Page template, you create an architecture model. Within
the architecture model, you add compositions and components and link new or existing models. You
simulate the behavior of the aggregated components. If you have Embedded Coder software, you can
export composition and component AUTOSAR XML (ARXML) descriptions and generate component
code.

Create architecture models

In R2019b, you can create an AUTOSAR architecture model, which provides resources and a canvas
for developing AUTOSAR composition and component models for the Classic Platform. Without
leaving the architecture model, you can:

• Add and connect AUTOSAR compositions and components.
• Link components to requirements (requires Simulink Requirements).
• Define component behavior by creating or linking Simulink models.
• Configure scheduling and simulation.
• Generate and package composition ARXML descriptions and component code (requires Embedded

Coder)

Architecture models provide an end-to-end, top-to-bottom AUTOSAR software design workflow. In
Simulink, you can author a high-level application design, implement behavior for application
components, add Basic Software (BSW) service calls and service implementations, and simulate the
application.

 Functionality being removed or changed

8-5

https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-autosar-service-instance-identification.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-memory-allocation-for-event-data.html

For more information, see Create AUTOSAR Architecture Models.

Add and connect compositions and components

After you create an AUTOSAR architecture model, use the composition editor and the Simulink
Toolstrip Modeling tab to add and connect compositions and components. Common tasks include:

• Add Component and Composition blocks from the palette or toolstrip.
• Create ports by clicking Component or Composition block edges.
• Connect Component and Composition blocks by dragging signal lines.
• Configure additional AUTOSAR properties by using the Property Inspector.

For more information, see Add and Connect AUTOSAR Compositions and Components.

Define component behavior by creating or linking models

After you add and connect Component and Composition blocks in an AUTOSAR architecture model,
you can add Simulink behavior to the components. For each AUTOSAR Component block, you can:

• Create a model based on the block interface.
• Link to an implementation model.
• Create a model from an AUTOSAR XML (ARXML) component description.

For more information, see Define AUTOSAR Component Behavior by Creating or Linking Models.

Configure scheduling and simulation

To simulate the behavior of the aggregated components in an AUTOSAR architecture model, click
Run. To configure scheduling and simulation, you can:

• Add Basic Software (BSW) blocks, including Diagnostic Service Component and NVRAM Service
Component blocks, to simulate calls to BSW services.

• Create a test harness model to connect inputs and plant elements to the architecture model.
• Use the Schedule Editor to schedule and specify the execution order of component runnables for

simulation.

For more information, see Configure AUTOSAR Scheduling and Simulation.

Generate and package composition ARXML descriptions and component code

In AUTOSAR architecture models, with one click, you can export composition and component ARXML
descriptions, generate component code, and package build artifacts. If you initiate an export that
encompasses a composition, it generates:

• XML descriptions for compositions, component prototypes, ports, and connectors.
• AUTOSAR compliant code for components.
• A ZIP file that packages ARXML files, code files, and required artifacts for integration with an

AUTOSAR run-time environment.

For more information, see Generate and Package AUTOSAR Composition XML Descriptions and
Component Code.

R2019b

8-6

https://www.mathworks.com/help/releases/R2019b/autosar/ug/create-architecture-models.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/component.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/composition.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/add-and-connect-compositions-and-components.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/component.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/composition.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/link-new-or-existing-models-or-import-arxml-software-components.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/diagnosticservicecomponent.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/nvramservicecomponent.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/nvramservicecomponent.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/configure-scheduling-and-simulation.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/export-composition-and-component-arxml-descriptions.html
https://www.mathworks.com/help/releases/R2019b/autosar/ug/export-composition-and-component-arxml-descriptions.html

R2019a

Version: 2.0

New Features

Bug Fixes

Compatibility Considerations

9

Introducing AUTOSAR Blockset
In R2019a, the AUTOSAR Blockset product replaces the Embedded Coder Support Package for
AUTOSAR Standard. You use AUTOSAR Blockset to design and simulate AUTOSAR software.

AUTOSAR Blockset provides an AUTOSAR dictionary and blocks for developing Classic and Adaptive
AUTOSAR software using Simulink models. You can define AUTOSAR software component properties,
interfaces, and data types, and map them to existing Simulink models using the AUTOSAR editor.
Alternatively, the blockset provides an application interface that lets you automatically generate new
Simulink models for AUTOSAR by importing software component and composition descriptions from
AUTOSAR XML files.

AUTOSAR Blockset provides blocks and constructs for AUTOSAR library routines and Basic Software
(BSW) services, including Memory Access and Diagnostics. By simulating the BSW services together
with your application software model, you can verify your AUTOSAR ECU software without leaving
Simulink.

AUTOSAR Blockset supports C and C++ production code generation and AUTOSAR XML file export
(with Embedded Coder). The software is qualified for use with the ISO 26262 standard (with IEC
Certification Kit).

Product restructuring overview
In R2019a, AUTOSAR Blockset provides AUTOSAR software design and simulation support that
previously was provided by Embedded Coder and the Embedded Coder Support Package for
AUTOSAR Standard. In the new product, in general, software interfaces and development workflows
are unchanged from previous releases. Product restructuring introduced these differences:

• Product requirements and dependencies:

• AUTOSAR Blockset requires only MATLAB and Simulink.
• Embedded Coder is required to generate AUTOSAR C/C++ code and XML files.
• No support package is required.

• Second development platform:

• R2019a adds AUTOSAR Adaptive Platform support to existing Classic Platform support.
• Classic and adaptive development workflows are logically distinct, and are handled separately

in AUTOSAR Blockset software interfaces and documentation.
• Existing Classic Platform workflows are unchanged, except where enhanced by R2019a

features.
• AUTOSAR block libraries relocated:

• AUTOSAR Blockset libraries replace block libraries from Embedded Coder and Embedded
Coder Support Package for AUTOSAR Standard.

• Existing block names are unchanged; new blocks are added.
• AUTOSAR example models renamed and relocated:

• For example, models autosar_swc*.slx in folder examples/autosarblockset replace
models rtwdemo_autosar_swc*.slx, formerly in folder toolbox/rtw/rtwdemos.

• Models remain accessible from the MATLAB command line.

R2019a

9-2

• AUTOSAR HTML help and PDF books restructured and relocated:

• AUTOSAR Blockset HTML help replaces AUTOSAR help in Embedded Coder and Embedded
Coder Support Package for AUTOSAR Standard.

• AUTOSAR Blockset Reference, User's Guide, and Release Notes PDF books replace the
Embedded Coder AUTOSAR PDF book.

Resources for upgrading from AUTOSAR Standard support package
If you are upgrading to AUTOSAR Blockset from Embedded Coder Support Package for AUTOSAR
Standard, review information about compatibility and upgrade issues at the following locations:

• AUTOSAR Blockset Release Notes (latest release). In HTML notes, to view only compatibility
considerations, select Incompatibilities Only.

• On the MathWorks® web site, view the R2018b Embedded Coder Support Package for AUTOSAR
Standard Release Notes. This document provides compatibility information for AUTOSAR
Standard support package releases up through R2018b. To locate compatibility considerations in
the page, click expand all in page and search for compatibility.

You can also refer to the rest of the archived documentation, including release notes, for Embedded
Coder Support Package for AUTOSAR Standard and Embedded Coder.

Compatibility Considerations
If you are upgrading to R2019a AUTOSAR Blockset from Embedded Coder Support Package for
AUTOSAR Standard, these minor compatibility considerations might apply.

• R2019a changes AUTOSAR example model locations. If you reference model names in scripts,
update the model names. The new example models use the prefix autosar_ and are located in the
folder matlabroot/examples/autosarblockset.

• R2019a restructures and relocates AUTOSAR HTML help and PDF books. Consider updating any
bookmarks or references.

For function interface compatibility considerations related to R2019a new features, see
“Incrementally auto-configure and map new Simulink elements in AUTOSAR model” on page 9-5.

For function interface changes that support R2019a workflow improvements, consider migrating to
the improved workflows. For more information, see “Reuse existing AUTOSAR elements for software
components created in Simulink” on page 9-5 and the lookup tables subsection of “Code
Perspective enhancements for mapping data stores, model workspace parameters, and internal
signals and states” on page 9-6.

AUTOSAR Classic Platform support extended to Release 4.3.1
R2019a extends support of AUTOSAR Classic Platform schema version 4.3 to include schema revision
4.3.1. AUTOSAR Blockset supports the new schema revision for import and export of ARXML files
and generation of AUTOSAR-compatible C code.

If you import schema 4.3.1 ARXML code into Simulink, the ARXML importer detects and uses the
schema version and revision, and sets the schema version parameter in the model. For more
information on schema import and export, see Select an AUTOSAR Schema.

 Functionality being removed or changed

9-3

https://www.mathworks.com/help/releases/R2018b/supportpkg/autosarstandard/release-notes.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/autosarstandard/release-notes.html
https://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/generating-autosar-code-and-description-files.html#brsz5z2-1

Support for AUTOSAR Adaptive Platform Release 18.10
In R2019a, you can flexibly model the structure and behavior of software components for the
AUTOSAR Adaptive Platform. The Adaptive Platform defines a service-oriented architecture for
automotive components that must flexibly adapt to external events and conditions. AUTOSAR
Blockset supports Adaptive Platform Release 18.10.

You can:

• Model AUTOSAR adaptive software components using event-based communication.
• With Embedded Coder, generate C++ code compliant with the AUTOSAR Adaptive Platform.
• Deploy generated code and build a target executable.

For more information, see Model AUTOSAR Adaptive Software Components and Configure AUTOSAR
Adaptive Software Components.

Generate AUTOSAR IFL and IFX library routines for interpolation using
AUTOSAR lookup table blocks
R2019a provides AUTOSAR lookup table blocks that you can configure to generate specific IFL and
IFX interpolation routines in your AUTOSAR-compliant C code.

• Curve – Approximate one-dimensional function
• Curve Using Prelookup – Use precalculated index and fraction values to accelerate approximation

of one-dimensional function
• Map – Approximate two-dimensional function
• Map Using Prelookup – Use precalculated index and fraction values to accelerate approximation of

two-dimensional function
• Prelookup – Compute index and fraction for Curve Using Prelookup or Map Using Prelookup block

To configure AUTOSAR library routine generation for a lookup table block, open the block parameters
dialog box. Modify the block parameters to configure a specific AUTOSAR routine. If you select the
AUTOSAR 4.0 code replacement library (CRL) for your model, code generated from the block is
replaced with the AUTOSAR library routine that you configured. For more information, see Configure
Lookup Tables for AUTOSAR Measurement and Calibration and Code Generation with AUTOSAR
Code Replacement Library.

Enhanced AUTOSAR model creation in Simulink using Component
Quick Start or Simulink Start Page
R2019a provides new resources for creating an AUTOSAR software component model in Simulink:

• AUTOSAR Component Quick Start – Provides easy, ordered steps for mapping an open Simulink
model to an AUTOSAR software component. In an open model, set System target file to an
AUTOSAR target and open Code perspective. AUTOSAR Component Quick Start opens, and you
can quickly step through AUTOSAR software component configuration.

• Simulink Start Page – Provides AUTOSAR Blockset model templates. Select a Classic Platform or
Adaptive Platform template, which you can use as a starting point for developing an AUTOSAR
software component model.

R2019a

9-4

https://www.mathworks.com/help/releases/R2019a/autosar/ug/model-autosar-adaptive-software-components.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-autosar-adaptive-software-components.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-autosar-adaptive-software-components.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/curve.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/curveusingprelookup.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/map.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/mapusingprelookup.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/prelookup.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/code-replacement-for-autosar.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/code-replacement-for-autosar.html

For more information, see Create AUTOSAR Software Component in Simulink.

Reuse existing AUTOSAR elements for software components created
in Simulink
R2019a enhances design and development of AUTOSAR software components created in Simulink by
supporting generalized reuse of existing AUTOSAR element definitions. Changes include:

• Improved import of AUTOSAR element definitions with function updateAUTOSARProperties
• Option to treat imported elements as read-only (the default), preventing definition changes, or

read-write
% Import XML definitions of AUTOSAR software address methods as read-write elements
ar = arxml.importer('SwAddressMethods.arxml');
updateAUTOSARProperties(ar,'mySWC','ReadOnly',false);

• AUTOSAR Dictionary displays Exported XML File name for packageable elements
• AUTOSAR XML export preserves ARXML file structure for imported noncomponent elements
• AUTOSAR property functions createEnumeration and createNumericType generate Simulink
definitions for working with imported AUTOSAR elements

• AUTOSAR Component Quick Start supports import of AUTOSAR element definitions as part of
initial configuration

Function updateAUTOSARProperties generalizes and replaces function updateReferences. If
you previously used updateReferences to import existing AUTOSAR elements into a Simulink-
originated component, consider replacing updateReferences function calls with
updateAUTOSARProperties function calls.

For more information, see the updateAUTOSARProperties reference page, Reuse AUTOSAR
Element Descriptions, and example Reuse AUTOSAR Elements in Component Model.

Incrementally auto-configure and map new Simulink elements in
AUTOSAR model
R2019a enhances AUTOSAR function autosar.api.create so that you can incrementally configure
and map Simulink elements as you modify your AUTOSAR model. When used with a mapped
AUTOSAR model, function call autosar.api.create(modelName):

• Preserves current model configuration and mapping.
• Finds and maps unmapped model elements.
• Updates the AUTOSAR Dictionary for deleted model elements.

For more information, see Incrementally Update AUTOSAR Mapping after Model Changes.

Compatibility Considerations
R2019a changes the default behavior of autosar.api.create. If you call the function without a
mode argument (init, default, or incremental), the function behavior depends on the mapping
state of the model.

 Functionality being removed or changed

9-5

https://www.mathworks.com/help/releases/R2019a/autosar/ug/create-an-autosar-software-component-in-simulink.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/arxml.importer.updateautosarproperties.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getautosarproperties.autosar.api.getautosarproperties.createenumeration.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getautosarproperties.autosar.api.getautosarproperties.createnumerictype.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/arxml.importer.updateautosarproperties.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/import-shared-autosar-element-definitions.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/import-shared-autosar-element-definitions.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/example-reuse-autosar-elements-in-component-model.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.create.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/incrementally-update-autosar-mapping-after-model-changes.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.create.html

• If the model is not mapped to an AUTOSAR software component, the function creates a Simulink
to AUTOSAR mapping in default mode. In this mapping, Simulink inports and outports are
mapped to AUTOSAR ports with default AUTOSAR properties.

• If the model is already mapped to an AUTOSAR software component, the function updates the
existing mapping in incremental mode. The function finds and maps unmapped model elements,
and updates the AUTOSAR Dictionary for deleted model elements.

Previously, if you called the function without a mode argument, the function created a Simulink to
AUTOSAR mapping in init mode. In this mapping, Simulink inports and outports were not mapped
to AUTOSAR ports. Also, if the model was already mapped to an AUTOSAR software component, the
new mapping replaced the existing mapping.

If a MATLAB script previously called the function autosar.api.create without a mode argument,
update the script to account for the R2019a behavior change. Consider taking advantage of the new
behavior or, if you rely on the previous init mode behavior, specify init as the mode argument.

Code Perspective enhancements for mapping data stores, model
workspace parameters, and internal signals and states
R2019a improves the Simulink to AUTOSAR mapping workflow by enhancing Code Mappings editor
tabs and improving graphical display of model data.

Map data stores to AUTOSAR component per-instance and static memory for calibration

In R2019a, AUTOSAR Code Mappings editor adds a Data Stores tab. In AUTOSAR code perspective,
use the tab to map internal data store elements to AUTOSAR component per-instance and static
memory for calibration. Alternatively, you can use equivalent AUTOSAR map functions
getDataStore and mapDataStore. For more information, see Map Data Stores to AUTOSAR
Variables, Configure AUTOSAR Per-Instance Memory, and Configure AUTOSAR Static Memory.

Map model workspace parameters to AUTOSAR component instance-specific parameters for
calibration

R2019a extends model workspace parameter mapping to support AUTOSAR per-instance parameters.
Using Code Mappings editor, Parameters tab, you can map model workspace parameters that are
marked as model arguments to AUTOSAR instance-specific parameters for calibration. Alternatively,
you can use equivalent AUTOSAR map functions getParameter and mapParameter. For more
information, see Map Model Workspace Parameters to AUTOSAR Component Internal Parameters,
Shared and Per-Instance Parameters, and Configure AUTOSAR Shared or Per-Instance Parameters.

Signals and States tabs combined

R2019a combines AUTOSAR Code Mappings editor tabs Signals and States into a Signals/States
tab. Use the Signals/States tab to map Simulink block signals or states to AUTOSAR variables for
calibration.

AUTOSAR map functions getSignal, getState, mapSignal, and mapState are not affected by the
Signals/States tab change.

Lookup Tables tab removed

R2019a removes the Lookup Tables tab from AUTOSAR Code Mappings editor. The Lookup Tables
tab was used to map Simulink lookup table or breakpoint objects created in the base workspace to

R2019a

9-6

https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getsimulinkmapping.autosar.api.getsimulinkmapping.getdatastore.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getsimulinkmapping.autosar.api.getsimulinkmapping.mapdatastore.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_bd1fa7d5-9a76-4d25-8f6d-02fcdbfb8a39
https://www.mathworks.com/help/releases/R2019a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_bd1fa7d5-9a76-4d25-8f6d-02fcdbfb8a39
https://www.mathworks.com/help/releases/R2019a/autosar/ug/use-data-store-memory-blocks-to-specify-per-instance-memory.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-autosar-static-memory.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getsimulinkmapping.autosar.api.getsimulinkmapping.getparameter.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getsimulinkmapping.autosar.api.getsimulinkmapping.mapparameter.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_e5dea389-b12e-4080-aba1-f6c0a419cb04
https://www.mathworks.com/help/releases/R2019a/autosar/ug/model-autosar-component-behavior.html#mw_9c841645-6c66-48bc-b82d-23f74f92f730
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-autosar-shared-or-per-instance-parameters.html

AUTOSAR calibration parameters for integrated and distributed lookups. Instead, you can use the
Parameters tab to map lookup table or breakpoint objects created in the model workspace. See Map
Model Workspace Parameters to AUTOSAR Component Internal Parameters.

AUTOSAR map functions getLookupTable and mapLookupTable are not affected by the Lookup
Tables tab removal. However, consider switching from using base workspace objects with functions
getLookupTable and mapLookupTable to using model workspace objects with functions
getParameter and mapParameter.

For an example of the model workspace-based workflow, see Configure Lookup Tables for AUTOSAR
Measurement and Calibration.

Model data grouped in categories for easy reference

To improve navigation and usability of model data mapping tables, Code Mappings editor now groups
model data into categories. The editor displays a node for each category. For example:

• The Signals/States tab displays nodes for Signals and States.
• The Parameters tab displays nodes for Local Parameters and Parameter Arguments.

To focus on entries of interest and reduce scrolling, you can expand and collapse model data
categories.

 Functionality being removed or changed

9-7

https://www.mathworks.com/help/releases/R2019a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_e5dea389-b12e-4080-aba1-f6c0a419cb04
https://www.mathworks.com/help/releases/R2019a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_e5dea389-b12e-4080-aba1-f6c0a419cb04
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getsimulinkmapping.autosar.api.getsimulinkmapping.getparameter.html
https://www.mathworks.com/help/releases/R2019a/autosar/ref/autosar.api.getsimulinkmapping.autosar.api.getsimulinkmapping.mapparameter.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2019a/autosar/ug/configure-com-axis-lookup-table-for-measurement-and-calibration.html

Parameter and signal calibration attributes removed from AUTOSAR
data objects
As part of the AUTOSAR parameter and variable calibration enhancements described in “Code
Perspective enhancements for mapping data stores, model workspace parameters, and internal
signals and states” on page 9-6, R2019a removes the calibration attributes SwCalibrationAccess
and DisplayFormat from AUTOSAR parameter and signal data objects. In the dialog box views of
objects such as AUTOSAR.Parameter and AUTOSAR.Signal, the calibration attributes and the
Additional attributes tab no longer appear.

Also, the AUTOSAR parameter and signal data objects can no longer be created by using the Model
Explorer. You instantiate the AUTOSAR objects in the MATLAB Command Window.

Compatibility Considerations
AUTOSAR software component models that model AUTOSAR parameters and variables by using
AUTOSAR data objects in the base workspace can no longer use AUTOSAR object interfaces to set
the calibration attributes SwCalibrationAccess and DisplayFormat.

Consider migrating the AUTOSAR models to the new Code Mappings editor workflow, which maps
Simulink model elements to AUTOSAR component elements. In the Code Mappings workflow,
AUTOSAR parameters and variables are scoped to the associated software component, and are
modeled by using Simulink model-workspace parameters and internal signals, states, and data stores.
When you select a parameter, signal, state, or data store in the Code Mappings editor, you can modify
its AUTOSAR calibration attributes in the Property Inspector.

For more information, see Map AUTOSAR Elements for Code Generation.

Change to AUTOSAR XML import behavior for
ArTypedPerInstanceMemory element with Service Dependency
In R2019a, when you import an ArTypedPerInstanceMemory element with a Service Dependency
from an ARXML file into Simulink, the importer:

• Adds a Data Store Memory block to the model.
• Adds a corresponding Simulink.Signal object to the model workspace.

R2019a

9-8

https://www.mathworks.com/help/releases/R2019a/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html

• Maps the internal data store to AUTOSAR component per-instance memory for calibration.

Previously, the importer added a Data Store Memory block to the model and added a corresponding
AUTOSAR.Signal object to the base workspace.

Compatibility Considerations
If existing AUTOSAR infrastructure expects import of an ArTypedPerInstanceMemory element with a
Service Dependency to add an AUTOSAR.Signal object to the base workspace, update the
infrastructure to reflect the new importer behavior.

Model Advisor checks for AUTOSAR Blockset configuration and lookup
table block code replacements
The following table identifies the new Model Advisor checks for AUTOSAR Blockset:

Model Advisor Check Check ID
Check model configuration parameters for
AUTOSAR compliance

mathworks.autosar.autosar_configset

Check compatibility of AUTOSAR
Interpolation Routines

mathworks.autosar.lut_replacement_check

AUTOSAR contextual tab in the Simulink Toolstrip Tech Preview
In R2019a, you have the option to turn on the Simulink Toolstrip. For more information, see Simulink
Toolstrip Tech Preview replaces menus and toolbars in the Simulink Desktop.

The Simulink Toolstrip includes contextual tabs, which appear only when you need them. The
AUTOSAR contextual tab includes options for completing actions that apply only to AUTOSAR
Blockset.

To access the AUTOSAR tab, with the Simulink Toolstrip activated, click Apps and then click the
AUTOSAR button. The AUTOSAR tab appears.

Documentation does not reflect the addition of the AUTOSAR contextual tab.

 Functionality being removed or changed

9-9

https://www.mathworks.com/help/releases/R2019a/simulink/release-notes.html#mw_e6387c87-85de-4074-950e-2b305953d16c
https://www.mathworks.com/help/releases/R2019a/simulink/release-notes.html#mw_e6387c87-85de-4074-950e-2b305953d16c

	R2023a
	AUTOSAR Software Component Modeling
	AUTOSAR Classic Platform Release 21-11
	Basic Software (BSW) blocks support all AUTOSAR schema versions
	Single Point Interpolation Block
	Support for reusable functions in multi-instance AUTOSAR export-function models
	Import of InitValue specified by Provide port supported for AUTOSAR parameters
	Find all elements of a category in AUTOSAR mapping
	Support for specifying version of AUTOSAR platform type name
	Support for uint32 data type for enumerations

	AUTOSAR Adaptive Software Component Modeling
	AUTOSAR Adaptive Platform Release 21-11
	Support for External Mode

	AUTOSAR Architecture Modeling
	Support for Adaptive AUTOSAR software architecture modeling
	Specifying Classic or Adaptive Platform for architecture models
	Manage multiple interface dictionaries in Interface Editor
	Support for Simulink.NumericType in interface dictionary
	Interface Editor support for custom architectures by using Native platform-independent setting
	Option to generate single ARXML file when exporting architecture models
	Support for exporting unlinked components in an AUTOSAR architecture model
	Create AUTOSAR architecture model from existing System Composer component
	Create lifeline as component or composition in sequence diagram for architecture models

	R2022b
	AUTOSAR Software Component Modeling
	AUTOSAR Classic Platform Release 20-11
	Initial values for NVRAM service component blocks
	Import for Basic Software blocks
	Implementation data types reference AUTOSAR implementation platform types
	LONG-NAME configuration for calibration and measurement elements
	Fix-Axis Lookup Tables ARXML Support
	RecordValueSpecification ARXML Support for Lookup Table Constants
	Calibration File Customization
	Simulink.ValueType object to store design attributes with data types
	Internal data packaging support for multi-instance AUTOSAR models
	End-to-End Transformer protection for sender and receiver ports
	Change the parameter value of AUTOSAR elements at precompile or postbuild using variant parameters

	AUTOSAR Adaptive Software Component Modeling
	AUTOSAR Adaptive Platform Release 20-11
	Modeling and code generation for ara::com::method asynchronous call behaviors
	Enhanced model function scheduling with multithreading for Adaptive AUTOSAR example main
	Top-down namespace support of user-defined data types for ARXML-imported Adaptive AUTOSAR models

	AUTOSAR Architecture Modeling
	New interface dictionary to support data type and interface management for architecture model components and compositions
	Graphical editor for interactive interface dictionary workflows
	Programmatic API for interface dictionary
	Interface dictionary migrator
	Profiles and stereotypes for AUTOSAR architecture models
	Enable function authoring in AUTOSAR Blockset architectures

	Functionality being removed or changed
	AUTOSAR Adaptive Linux Executable Toolchain

	R2022a
	AUTOSAR software component modeling
	AUTOSAR Classic Platform Release 19-11
	Postbuild Conditions for Startup Variants
	Basic Software component event failure testing and simulation with Dem Status Override and Dem Status Inject blocks
	Configure NvBlockNeeds parameters StoreAtShutdown and RestoreAtStart
	Export ARXML without unused data types and related elements
	Improved breakpoint ARXML and mapping support for model hierarchies
	Code replacement enhancements for blocks that do not overflow
	Generate Calibration Files tool for Classic AUTOSAR

	AUTOSAR adaptive software component modeling
	ara::com::method support
	Event-based execution modeling and code generation for ara::com events
	Scoped enum classes for C++11 code generation
	Nested namespace customization for C++ code generation
	Enable ara::com DDS binding for Adaptive AUTOSAR applications

	R2021b
	AUTOSAR software component modeling
	AUTOSAR IFX, IFL, MFX, and MFL library implementations for host code verification
	Improved lookup table ARXML support for model hierarchies
	Lookup table ARXML support for AdminData record layout annotations
	Improved performance for imported compositions by sharing AUTOSAR dictionary

	AUTOSAR adaptive software component modeling
	Persistent memory for adaptive applications
	C++ reference types in the generated code
	Name and namespace customization for C++ model classes

	Export software component mapping for AUTOSAR ECU
	AUTOSAR mapping workflow enhancements
	Specify message queue properties on AUTOSAR component-level bus element ports
	Functionality being removed or changed
	AUTOSAR adaptive default name for a model class is the model name

	R2021a
	AUTOSAR software component modeling
	Simulink messaging over bus ports for queued S-R communication
	Components with export-function runnables support Simulink bus ports
	Components with Simulink bus ports support variant conditions and nonvirtual buses
	Default data packaging for AUTOSAR internal variables
	Lookup table ARXML support for row-major layout and improved tool interoperability

	AUTOSAR adaptive software component modeling
	AUTOSAR Adaptive Platform Release 19-11
	Simulink messaging over bus ports for event-based communication
	Enhanced CMake tooling for adaptive models
	Run-time logging (ara::log) for adaptive executables

	AUTOSAR architecture modeling
	ARXML support for execution order constraints at architecture (VFB) level
	Model Linker app for meeting component model linking requirements

	R2020b
	AUTOSAR software component modeling
	Support for AUTOSAR Classic Platform Release 4.4
	Port parameter modeling enhancements
	Import and export AUTOSAR IncludedDataTypeSets
	ARXML support for execution order constraints
	Signal data mapping enhancements

	AUTOSAR adaptive software component modeling
	Linux executables for adaptive models
	ASAP2 file generation enhancements

	Import AUTOSAR software composition into architecture model
	Functionality being removed or changed
	Support for AUTOSAR Classic Platform schema versions 3.x and 2.1 has been removed

	R2020a
	AUTOSAR software component modeling
	Model function inhibition by using Basic Software blocks
	Export multidimensional matrices for AUTOSAR variables

	AUTOSAR adaptive software component modeling
	Support for AUTOSAR Adaptive Platform Release 19-03
	Calibrate data for adaptive applications by using XCP and ASAP2
	Find adaptive services by using dynamic discovery

	AUTOSAR software architecture modeling
	Use spotlight view to analyze component or composition dependencies
	Programmatically create and configure architecture models

	Functionality being removed or changed
	Support for AUTOSAR Classic Platform schemas 3.x and 2.1 will be removed

	R2019b
	AUTOSAR Component Designer app and AUTOSAR tab
	AUTOSAR software component modeling
	Map calibration data for submodels referenced from component models
	Export variation points for calibration data
	Model AUTOSAR ports by using Simulink bus ports
	Configure runnable execution order by using Schedule Editor
	Code Mappings editor changes

	AUTOSAR adaptive software component modeling
	Import ARXML software descriptions
	Configure service instance identification for ARXML manifest and generated code
	Configure event sends with memory allocation

	AUTOSAR software architecture modeling
	Create architecture models
	Add and connect compositions and components
	Define component behavior by creating or linking models
	Configure scheduling and simulation
	Generate and package composition ARXML descriptions and component code

	R2019a
	Introducing AUTOSAR Blockset
	Product restructuring overview
	Resources for upgrading from AUTOSAR Standard support package
	AUTOSAR Classic Platform support extended to Release 4.3.1
	Support for AUTOSAR Adaptive Platform Release 18.10
	Generate AUTOSAR IFL and IFX library routines for interpolation using AUTOSAR lookup table blocks
	Enhanced AUTOSAR model creation in Simulink using Component Quick Start or Simulink Start Page
	Reuse existing AUTOSAR elements for software components created in Simulink
	Incrementally auto-configure and map new Simulink elements in AUTOSAR model
	Code Perspective enhancements for mapping data stores, model workspace parameters, and internal signals and states
	Map data stores to AUTOSAR component per-instance and static memory for calibration
	Map model workspace parameters to AUTOSAR component instance-specific parameters for calibration
	Signals and States tabs combined
	Lookup Tables tab removed
	Model data grouped in categories for easy reference

	Parameter and signal calibration attributes removed from AUTOSAR data objects
	Change to AUTOSAR XML import behavior for ArTypedPerInstanceMemory element with Service Dependency
	Model Advisor checks for AUTOSAR Blockset configuration and lookup table block code replacements
	AUTOSAR contextual tab in the Simulink Toolstrip Tech Preview

